бесплатные рефераты

Основы финансирования

Основы финансирования

Задача 1


Пожаром 20 июня супермаркете «Виктория» были повреждены товары. На 1 июня в магазине имелось товара на 3500 тыс. руб. С 1 по 20 июня поступило товаров на 2800 тыс. рублей, сдано в банк выручки 3200 тыс. руб., сумма несданной выручки – 60 тыс. руб., естественная убыль составила 1,2 тыс. руб.

После пожара был произведен учет спасенных товаров на сумму 2036,2 тыс. руб. Издержки обращения – 10%, торговая надбавка – 25%. Расходы по списанию и приведению товаров в порядок составили 8,0 тыс. руб. Страховая сумма составляет 70% от фактической стоимости товаров на момент заключения договора страхования.

Исчислите ущерб страхователя и величину страхового возмещения.

Решение

Определяем:

1) стоимость товара в универмаге на момент пожара =

= 3500 + 2800 – 3200 – 60 – 1,2 = 3038,8 тыс. руб.;

2) стоимость погибшего и уценки поврежденного имущества =

= 3038,8 – 2036,2 = 1002,6 тыс. руб.;

3) ущерб = стоимости погибшего и уценки поврежденного имущества – торговые надбавки + издержки обращения + расходы по спасанию и приведению имущества в порядок;

где торговые надбавки и издержки обращения равны:


Торговые надбавки = (стоимость погибшего и уценки поврежденного имущества*уровень надбавок в %)/ (100 + уровень торговых надбавок в %)


Издержки обращения = (стоимость погибшего и уценки поврежденного имущества *уровень издержек в %)/100


Торговые надбавки = 10002,6*25 / (100+25)=200,52 тыс. руб.

Издержки обращения = 10002,6*10 / 100=100,26 тыс. руб.

Ущерб = 1002,6 – 200,52 + 100,26 + 8,6 = 910,94 тыс. руб.

Величина страхового возмещения =

= 910,94*0,7 = 637,658 тыс. руб.

 

Задача 2


Объект стоимостью 6 млн. рублей застрахован по одному договору тремя страховщиками: первым – на сумму 2,5 млн. руб., вторым на сумму 2 млн., третьим на сумму 1,5 млн. руб. Страховым случаем (произошел пожар) нанесен ущерб объекту в сумме 1,8 млн. руб. Определите размер выплаты страхователю каждым страховщиком.

Решение

Первым: (1,8*2,5)/6 = 0,75 млн. руб. или 750 тыс. руб.

Вторым: (1,8*2)/6 = 0,6 млн. руб. или 600 тыс. руб.

Третьим: (1,8*1,5)/6 = 0,4 млн. руб. 450 тыс. руб.

 

Задача 3


Выполните следующие расчеты по операциям с векселями:

1.                  Простой вексель выдается на сумму 800 тыс. руб., с уплатой в конце года. Какую сумму владелец получит, если он учтет вексель за 5 месяцев до срока погашения по простой учетной ставке 12% годовых?

2.                  Переводной вексель (тратта) выдается на сумму 2 млн. руб., срок его погашения – 2 года. Какова сумма дисконта при учете векселя по сложной учетной ставке, равной 18% годовых?

Решение 1 ситуации:

Находим стоимость векселя по формуле:


P = S (1 – nd), где:


S – выплачиваемая сумма денежных средств по векселю в момент погашения;

n – количество периодов наращения;

d – учетная ставка ( в долях от единицы).

Поскольку в 1 ситуации учет будет исчисляться в месяцах, то d разделим на 12, т.е.

80000*(1 –5*0,12/12) = 760000 руб.

Во второй ситуации находим стоимость векселя в настоящее время по формуле:


P = S (1 – d)n


P = 2000000*(1 – 0,18 )2 = 1344800 руб.

Находим сумму дисконта как разницу между суммой векселя, выплачиваемой в момент его погашения и сегодняшней стоимостью векселя:

2000000 руб. – 1344800 руб. = 655200 руб.

 

Задача 4


Инвестор приобрел акцию. Сумма дивидендов в первый год – 50$, а в последующие годы возрастает на 10$ ежегодно. Норма текущей доходности акции 15% в год.

Определите текущую рыночную цену акции из условия работы с ней в течение 5 лет.

Решение:

1)                 Определим сумму дивидендов в 2,3,4, 5 год.

2 год 50 + 10 = 60$

3 год 60 + 10 = 70$

4 год 70 + 10 = 80$

4 год 80 + 10 = 90$

2)                 Рыночная цена ∑ Дт/ (1+ I)n = 50/(1 + 0,15) + 60/(1 + 0,15)2 + 70/(1 + 0,15)3 + 80/(1 + 0,15)4 + 90/(1 + 0,15)5 = 225,36$, где:

Дт – сумма дивидендов;

I – ставка процента;

n – число лет.

 

Задача 5


Микроволновая печь ценой 2 тыс. руб. продается в кредит год под 10% годовых. Погасительные платежи вносятся через каждые три месяца. Определить размер разового погасительного платежа.

Решение:

Сумма, подлежащая погашению за весь срок кредита:


S = P(1+in),


где:

Р – сегодняшняя стоимость платежей,

S – сумма денежных средств, которая будет выплачена к концу срока,

n – срок кредита в годах

I – ставка %.

S = 2(1 + 1*0,1) = 2,2 тыс. руб.

Разовый погасительный платеж:


q = S/nm,


где:

m – число платежей.

q = 2,2/1*4 = 0,55 тыс. руб. или 550 руб.

 

Задача 6


Кредит в сумме 10 тыс. $ выдан на шесть месяцев под 20% годовых (проценты простые). Погашение задолженности производится ежемесячными платежами. Составить план погашения задолженности.

Решение

Наращенная сумма долга в конце периода составит:


S = Р(1 + in) = 10(1 + 0,5*0,2) = 11 тыс. $,


где:

Р – сегодняшняя стоимость платежей,

S – сумма денежных средств, которая будет выплачена к концу срока,

n – срок кредита в годах,

i – ставка %.

Сумма начисленных процентов:


I = Рin


I = 10*0.5*0.2 = 1 тыс. $

Ежемесячные выплаты:


q = S/nm,


где:

S – сумма денежных средств, которая будет выплачена к концу срока,

m – число платежей,

n – число лет.

q = 11000/6 = 1833,33$

Найдем сумму порядковых номеров месяцев:

1 +2+3+4 + 5+6 = 21

Из первого платежа в счет уплаты процентов идет 6/21 общей суммы начисленных процентов:

6/21*1000 =285,71 $

Сумма, идущая на погашение основного долга, составляет:

1833,33 – 285,71 = 1547,62 руб.

Из второго платежа в счет уплаты процентов идет 5/21 общей суммы начисленных процентов:

5/21* 1000 =238,09 $

Сумма, идущая на погашение долга:

1833,33 – 238,09 = 1595,24$

План погашения долга:


Доля погашаемых процентов

Сумма погашения процентных платежей

Сумма погашения основного долга

Остаток основного долга на начало месяца

6/21

285,71

1547,62

10000

5/21

238,09

1595,24

8452,38

4/21

190,48

1642,86

6857,14

3/21

142,86

1690,48

5214,28

2/21

95,24

1738,09

3523,8

1/21

47,62

1785,71

1785,71

Итого

1000

10000



Задача 7


Имеются два обязательства. Условия первого – выплатить 400 тыс. руб. через четыре месяца; условия второго – выплатить 450 тыс. руб. через восемь месяцев. Можно ли считать их равноценными? Ставка процента 12% годовых.


Решение

Применим простую ставку, так как платежи краткосрочные. Тогда современные стоимости этих платежей:


Р = S/(1+ni)


Р – сегодняшняя стоимость платежей,

S – сумма денежных средств, которая будет выплачена к концу срока;

n – количество начислений,

I – ставка %.

Р1 = 400/(1+0,12*4/12) = 384,62 тыс. руб.

Р2 = 450/(1+0,12*8/12) = 416,67 тыс. руб.

Ответ: сравниваемые обязательства не являются эквивалентными при заданной ставке и не могут заменять друг друга.

 

Задача 8


Определите целесообразность вложения средств в инвестиционный проект путем определения доходности инвестиций без учета и с учетом дисконтирования на основе следующих данных:

коэффициент дисконтирования – 0,15;

инвестиции в нулевой год реализации проекта 600 тыс. руб.;

результаты от реализации проекта за 3 года:

1 год – 210 тыс. руб.,

2 год – 220 тыс. руб.,

3 год – 400 тыс.

Решение

1) Доходность проекта без учета дисконтирования:

(210 + 220 + 400) – 650 = +180 тыс. руб.

2) Доходность проекта с учетом дисконтирования:


Р = S/(1 + I)n


1 год – 210/(1+0,15) = 183 тыс. руб.

2 год – 220/(1+0,15)2 = 166,7 тыс. руб.

3 год – 400//(1+0,15)3 = 263 тыс. руб.

Чистый дисконтированный доход (ЧДД) = (83+166,7+263) – 650 = –37,3 тыс. руб.

Ответ: внедрение проекта нецелесообразно, поскольку ЧДД меньше 0.



© 2010 РЕФЕРАТЫ