бесплатные рефераты

Информация для прогнозирования и планирования

Информация для прогнозирования и планирования

Федеральное агентство по образованию

—————————————————————————————————

Факультет управления, экономики, финансов и предпринимательства

Кафедра менеджмента











Курсовая работа


по дисциплине «Социальное и экономическое прогнозирование»

на тему: «Информационное обеспечение прогнозирования и планирования»









Выполнил: студент гр.

 

Проверил: доцент














2007

Содержание

Введение. 3

1. Информация для прогнозирования и планирования. 4

1.1 Методы получения вторичной информации. 7

1.2 Методы получения первичной информации. 12

2. Планирование выборочных исследований. 20

Заключение. 27

Список использованной литературы.. 28


Введение

В экономике, в предпринимательской деятельности прогноз – это научно-аналитический этап процесса планирования. Прогноз определяет возможности, в рамках которых могут ставиться реалистичные задачи планирования развития экономики или работы предприятия. Прогнозирование и планирование немыслимо без использования различного рода информации, будь то данные, полученные в ходе исследований, специально проведенных для решения конкретной проблемы, либо же данных, собранных ранее из внутренних и внешних источников.

На сегодняшний день  с быстрыми темпами развития информационных технологий, а именно с развитием компьютерной техники, систем связи и телекоммуникаций, сетевых технологий и развитием глобальной сети Интернет, появилась возможность массового доступа к информации, а также ее упорядочивание, анализ и обработка с помощью компьютеров. Актуальность данной курсовой работы в том, что в этих условиях необходимо знать какую информацию и с помощью каких методов наиболее быстро и просто получить и проанализировать ее.

В этой связи целью курсовой работы является получение полного представления о типах информации и методах ее получения.

Руководствуясь поставленной целью, определены следующие задачи данного курсового проекта:

- обобщить теоретико-методологические основы получения информации для прогнозирования и планирования;

- осуществить анализ планирования выборочных исследований и рассмотреть на примерах определение объема выборки с помощью методов математической статистики;

- сформулировать практические рекомендации, направленные на совершенствование сбора необходимой информации для процесса прогнозирования и планирования.

1. Информация для прогнозирования и планирования

Основные типы информации и источники ее получения.

Прогнозирование и планирование явно или неявно основывается на информации, которая может быть получена с использованием первичных и вторичных данных, или первичной и вторичной информации.

Первичные данные получают в результате исследований, специально проведенных для решения конкретной проблемы. Их сбор осуществляется путем наблюдений, измерений, опросов, экспериментальных исследований. Их обычно выполняют только для части генеральной, то есть общей, совокупности исследуемых объектов. Эта часть, как известно, называется выборкой.

Вторичные данные, применяемые при проведении так называемых кабинетных исследований, — это данные, собранные ранее из внутренних и внешних источников для целей, отличных от целей данного исследования.

Кабинетные исследования являются наиболее доступным и дешевым методом получения информации, необходимой для прогнозирования и планирования. Для небольших организаций — это основной метод получения информации.

Внутренними источниками информации служат бухгалтерские, финансовые, статистические и иные отчеты организации, беседы с сотрудниками и руководителями, информационные системы в электронных офисах, вычислительных центрах. Внутренними источниками могут быть отчеты руководителей на заседаниях и собраниях коллегиальных органов управления, сообщения персонала, обзоры жалоб, протоколы различных заседаний, деловая переписка.

Вторичная информация из внешней среды обширна и, как правило, рассеяна во множестве источников, которые полностью невозможно перечислить. Многие международные и российские организации регулярно публикуют экономические данные, полезные при анализе и прогнозировании.

Внешними источниками являются данные международных организаций, таких, как Международный валютный фонд, Европейская организация по сотрудничеству и развитию, ООН. Это, кроме того, законы, указы, постановления государственных органов; выступления государственных, политических и общественных деятелей; данные официальной статистики, периодической печати; результаты научных исследований и другие источники.

Следует использовать следующие источники: статистические ежегодники; данные переписи населения; каталоги, проспекты и годовые финансовые отчеты фирм; результаты конкурсов; информация отраслей, бирж, банков; таблицы курсов акций; судебные решения.

Вторичные данные можно получить из многочисленных изданий экономического и специального характера, таких, как газеты, журналы, информационно-аналитические бюллетени. К источникам внешней вторичной информации также относятся выставки, ярмарки, совещания, конференции, презентации, дни открытых дверей, базы и банки данных.

В России функционирует ряд компьютерных информационных систем, специально ориентированных на сбор и передачу разнообразной информации. Активно развивается процесс распространения электронной информации. Например, Госкомстат России имеет в сети Интернет серверы, содержащие необходимую в практике прогнозирования и планирования информацию.

Основная тематика электронных баз данных — это финансово-экономическая статистика, информация о государственных бюджетах, фирмах, отраслях, странах, регионах, коммерческих предложениях, ценных бумагах.

Главные достоинства использования вторичных данных — это быстрота получения, дешевизна, легкость использования, а также повышение эффективности сбора первичных данных. Поэтому сбор вторичной информации обычно предшествует сбору первичной информации.

Недостатки вторичных данных — это возможная несогласованность единиц измерения, использование различных определений и систем классификаций, разная степень новизны, трудность оценки достоверности.

Для определения источников вторичной информации необходимо выполнить следующие процедуры. Установить, какая информация уже имеется и какая необходима. Составить список ключевых терминов и названий, определяющих содержание источников вторичной информации. Осуществить поиск вторичных источников информации, начиная с каталогов печатных изданий и серверов компьютерных сетей. Оценить найденную информацию.

Если информация не соответствует требованиям, то. необходимо уточнить список ключевых терминов и названий, требования к содержанию и качеству информации и продолжить поиск. Оценить найденную информацию. На этом этапе уже необходимо ясное представление о характере требуемой информации и необходимости использования дополнительных источников.

Синдикативная информация. Внешнюю информацию можно подразделить на официально опубликованную, доступную для всех, и на так называемую синдикативную информацию. Это первичная информация, которую специальные информационно-консультационные организации собирают, обрабатывают, а затем продают своим подписчикам.

Важным достоинством синдикативных данных является их невысокая стоимость, так как она разделяется между подписчиками. Синдикативные данные основаны на отработанной системе сбора информации, поэтому им присуще высокое качество.

Недостатки синдикативных данных: во-первых, подписчики не могут влиять на сбор информации. Поэтому, перед тем как стать подписчиком, необходимо оценить пригодность информации; во-вторых, поставщики синдикативных данных обычно стараются заключать контракты на длительный период; в-третьих, стандартизированные синдикативные данные доступны многим пользователям, в том числе конкурентам.

Синдикативные данные собирают обычно в нескольких направлениях, это прежде всего: 1) оценки отношений потребителей и общественного мнения. Например, как изменяется система общественных ценностей и как это влияет на выбор потребителей; 2) определение рыночных сегментов. Получают информацию о потребителях, определяющих структуру рынков потребительских товаров, рынков продукции производственно-технического назначения; 3) отслеживание рыночных тенденций. Ведется отслеживание динамики показателей объема продаж и рыночной доли как для розничной торговли, так и для отдельных домашних хозяйств.

1.1 Методы получения вторичной информации

Методы анализа документов. Для получения нужной информации необходимо использование методов анализа изучаемых данных. Вею совокупность носителей таких данных называют документами.

Выделяют два основных типа анализа: традиционный, классический, и формализованный, количественный — контент-анализ. Существенно различаясь между собой, они не исключают, а взаимно дополняют друг друга, позволяя компенсировать имеющиеся недостатки. Анализ документов используется главным образом при работе с вторичными данными.

Традиционный анализ — это цепь логических построений, направленных на выявление сути анализируемого материала. Интересующая информация, заложенная в документе, часто присутствует в неявном виде, в форме, отвечающей целям созданного документа, но не всегда отвечающей целям конкретного исследования.

Традиционный анализ позволяет улавливать основные мысли и идеи, оценить скрытые стороны содержания документа, проникнуть вглубь документа, исчерпать его содержание. Основным его недостатком является субъективность.

При проведении традиционного анализа необходимо ответить на следующие вопросы. Что представляет собой документ? Каков его контекст? Кто его автор? Каковы цели создания документа? Какова надежность самого документа? Какова достоверность зафиксированных в нем данных? Каково фактическое содержание документа? Каково оценочное содержание документа? Какие выводы можно сделать о фактах, содержащихся в документе? Какие выводы можно сделать об оценках, содержащихся в документе?

В традиционном анализе различают внешний и внутренний анализ.

Внешний анализ — это анализ контекста документа в собственном смысле этого слова и всех тех обстоятельств, которые сопутствовали его появлению. Цель внешнего анализа — установить вид документа, его форму, время и место появления. Определяются автор и инициатор создания документа, цели его создания, достоверность и суть его контекста.

Пренебрежение таким анализом во многих случаях грозит неверным истолкованием содержания документа. Например, сиюминутная политическая ситуация может диктовать тенденциозную оценку событий.

Внутренний анализ — это исследование содержания документа. По существу, вся работа направлена на проведение внутреннего анализа документа, включающего выявление уровня достоверности приводимых фактов и цифр, установление уровня компетенции автора документа, выяснение его личного отношения к описываемым в документе фактам.

Искажения могут возникать не только в результате личной симпатии или антипатии автора; источником искажения выступает и методологическая позиция автора. Авторы, придерживающиеся разных теоретических позиций, могут признать существенными в объяснении конкретного явления разные факты.

Некоторые документы требуют специальных методов анализа.

Психологический анализ применяется, как правило, при оценке отношения автора к какому-либо политическому, экономическому или социальному явлению. На основе таких исследований может быть получено представление о формировании общественного мнения, общественных установок.

Юридический анализ — применяется для всех видов юридических документов. В юриспруденции используется специфический словарь терминов, замена которых недопустима. Незнание юридического словаря при анализе юридических документов может привести к грубым ошибкам.

Формализованный анализ документов позволяет избавиться от субъективности за счет применения количественных методов.

Суть этих методов сводится к тому, чтобы найти такие подсчи­тываемые признаки, черты, свойства документа, например, такой признак, как частота употребления определенных терминов, кото­рые отражают существенные стороны содержания. Качественное содержание делается измеримым, становится доступным точным вычислительным операциям. Ограниченность формализованного анализа заключается в том, что далеко не все содержание документа может быть измерено с помощью формальных показателей.

Контент-анализ — это техника выведения заключения, производимого благодаря объективному и систематическому выявлению соответствующих задачам исследования характеристик текста. Подразумевается, что применение такой техники включает в себя некоторые стандартизованные процедуры, часто предполагающие измерение.

На практике определились некоторые общие принципы целесообразности и полезности применения методов количественного анализа: 1) когда требуется высокая степень точности или объективности анализа; 2) при наличии обширного по объему и несистематизированного материала; 3) когда важные категории характеризуются определенной частотой появления в изучаемых документах.

Требование объективности анализа делает необходимым пере­вод исследуемого материала на язык гипотез в единицах, которые позволяют точно описать характеристики текста. В связи с этим исследователю приходится решать ряд проблем, связанных с выработкой категорий анализа, с выделением единиц анализа и единиц счета.

Категории анализа — это понятия, в соответствии с которыми будут сортироваться единицы анализа — единицы содержания. При разработке категорий важно учитывать, что от их выбора будет в значительной степени зависеть характер полученных результатов. Как правило, необходимо несколько раз переходить от теоретической схемы к документальным данным, а от них — снова к схеме, чтобы исходя из выбранной гипотезы выработать категории, соответствующие задачам исследования.

Категории должны быть исчерпывающими, охватывать все части содержания, определяемые задачами данного исследования. Категории должны отвечать требованию надёжности, их следует сформулировать так, чтобы у различных исследователей была достаточно высокая степень согласия по поводу того, какие части содержания следует отнести к той или иной категории.

Эффективным способом повышения надежности категории является ее исчерпывающее определение и перечисление всех входящих в нее элементов. Тогда обработка документа сводится к чисто техническим процедурам, для выполнения которых могут использоваться средства электронных офисов. Например, можно использовать текстовые редакторы офиса Microsoft Office 2007.

При проведении формализованного анализа содержания нужно четко указать признаки, по которым определенные единицы относятся к определенным категориям.

Единицей анализа — смысловой или качественной — является та часть содержания, которая выделяется как элемент, подводимый под ту или иную категорию. В тексте она может быть выражена по-разному: одним словом, некоторым устойчивым сочетанием слов или может вообще не иметь явного терминологического выражения, а преподноситься описательно или скрываться в заголовке абзаца, раздела. Поэтому возникает задача выделения признаков — индикаторов, по которым определяется наличие в тексте интересующей темы.

Индикаторы могут быть неоднородны: относящиеся к теме слова и словосочетания, термины, имена людей, названия организаций, географические названия, пути решения экономических проблем.

При изучении экономических проблем смысловые единицы могут включать внутренние и международные события; лиц и авторов, описывающих эти события или являющихся их инициаторами и пропагандистами; отношение к событиям в терминах: «за — против», «выгодно — невыгодно», «хорошо — плохо», в чьих это интересах. Определены некоторые «стандартные» смысловые единицы, приведенные ниже.

Понятие, выраженное отдельным словом, термином или сочета­нием слов. Применение такой единицы целесообразно при изучении способов, с помощью которых источник информации организует сообщение, передает свои намерения тем, кому оно направлено.

Тема, выраженная в единичных суждениях, смысловых абзацах, целостных текстах. Тема является важной смысловой единицей при анализе направленности интересов, ценностных ориентаций, установок тех, кто передает сообщение. Однако определение темы часто затруднено в связи с неясностью текста. Тому, кто проводит анализ, приходится определять тему и ее границы внутри текста. Выбор темы в качестве единицы анализа подразумевает также внутреннее разделение текста на определенные части, внутри которых тема может быть определена.

Имена людей, географические названия, марки продуктов, названия организаций, упоминание какого-либо события. Частота и длительность промежутка времени, с которыми они присутствуют в сообщении, могут послужить показателями их важности, значимости для исследуемого объекта.

Выбрав смысловую единицу и ее индикаторы, необходимо оп­ределить также единицу счета, которая станет основанием для ко­личественного анализа материала.

Единица счета «время — пространство». Подсчет в этой системе пригоден в основном при исследовании сообщений, передаваемых средствами массовой информации. За единицы счета здесь принимаются числа строк, абзацев, квадратных сантиметров площади, знаков, колонок в печатных текстах, посвященных тому или иному вопросу, мнению, оценке. Для кино, радио и телевидения единицей счета будет время, отведенное освещению определенного события.

Единица счета «появление признака». Такая система счета подразумевает необходимость отмечать наличие определенной характеристики в любом ее проявлении; например, упоминание опреде­ленной марки товара в каждой из единиц контекстов. Иногда отме­чается лишь появление признака, а повторение данной характеристики внутри единицы контекстов не учитывается.

Единица счета «частота появления». Самым распространенным способом измерения характеристик содержания является подсчет частот их употребления, когда фиксируется каждое появление любого признака данной характеристики. В зависимости от того, какие единицы счета выбираются, частота может использоваться для решения различных задач.

Частота появления темы в том или ином документе может служить показателем ее значимости с точки зрения автора документа. Подсчет оценочных характеристик текста позволяет подойти к исследованию установок автора сообщения и к выявлению намерений, которыми было продиктовано сообщение.

1.2 Методы получения первичной информации

Методы сбора первичных данных можно классифицировать как количественные и качественные.

Количественные исследования обычно отождествляют с проведением измерений и различных опросов. Опросы основаны на использовании структурированных вопросов закрытого типа, на которые отвечает большое число респондентов. Структурированные вопросы закрытого типа — это вопросы, на которые можно дать только определенный ответ, например «да» или «нет». Характерными особенностями таких исследований являются: четко определенные формы данных и источники их получения, обработка собранных данных с помощью упорядоченных количественных процедур.

Качественные исследования включают сбор, анализ и интерпретацию данных путем наблюдения за тем, что люди делают и говорят. Наблюдения и выводы носят качественный характер и осуществляются в нестандартной форме. Качественные данные могут быть переведены в количественную форму, но этому предшествуют специальные процедуры.

К качественным методам относят наблюдение, глубинные интервью, анализ протоколов бесед, некоторые разновидности экспертных методов. Если наблюдения сопровождаются измерениями, то это способ количественного исследования.

Основу качественных исследований составляют методы наблюдений, предполагающие скорее наблюдение, чем коммуникации с респондентами. Большинство этих методов основано на подходах, разработанных психологами.

Наблюдение представляет собой метод сбора первичной информации об изучаемом объекте путем наблюдения за выбранными группами людей, действиями и ситуациями. При этом исследователь непосредственно воспринимает и регистрирует все факторы, касающиеся изучаемого объекта и значимые с точки зрения целей исследования.

Наблюдение может быть направлено на достижение различных целей. Оно может быть использовано как источник информации для построения гипотез, служить для проверки данных, полученных другими методами, с его помощью можно извлечь дополнительные сведения об изучаемом объекте.

Разнообразие способов проведения наблюдений определяется четырьмя подходами к их осуществлению: прямое или непрямое наблюдение, открытое или скрытое, структурализованное или неструктурализованное, осуществляемое с помощью человека или механических средств.

Прямое наблюдение предполагает непосредственное наблюдение за поведением, скажем, покупателей в магазине, например, в какой последовательности они изучают товары, выставленные на прилавке. При применении непрямого наблюдения изучаются результаты определенного поведения, а не само поведение. Здесь часто используются архивные данные, например, данные о динамике запасов определенных товаров, которые могут быть полезными при изучении сдвигов в рыночной ситуации.

Открытое наблюдение предполагает, что люди знают о том, что за ними наблюдают, например, при проведении специальных экспериментов. Однако присутствие наблюдателей влияет на поведение наблюдаемых, поэтому надо стремиться свести его к минимуму.

Этим требованиям удовлетворяет скрытое наблюдение, когда обследуемый не предполагает, что за ним наблюдают. Например, в магазинах могут скрыто наблюдать за тем, насколько продавец вежливо обходится с покупателями и помогает им совершить покупку.

При проведении структурализованного наблюдения наблюдатель заранее определяет, что он будет наблюдать и регистрировать. Все другие виды поведения игнорируются. Часто используется стандартный лист наблюдений, сокращающий до минимума затраты времени наблюдателя.

Этот метод дает возможность осуществлять наблюдения  по заранее намеченной схеме, фиксировать результат наблюдений для каждой выделенной категории. Это наблюдения не носят случайного или произвольного характера, а осуществляются в соответствии с определенным планом, обладают высокой степенью законченности. Исследователю легче обобщить результаты, полученные от разных наблюдателей.

Когда осуществляется неструктурализованное наблюдение, наблюдатель фиксирует в изучаемом эпизоде все виды поведения. Такой тип поведения часто используется при проведении разведочных исследований.

Обычно метод наблюдений используется совместно с другими методами. Полученные в этом случае результаты дополняют и контролируют друг друга. Так, если наблюдение используется для контроля данных, полученных другими методами, оно должно быть максимально строго структурализовано, проводиться в тех условиях, в которых собиралась контролируемая информация.

Недостатки метода наблюдений присущи всем качественным исследованиям. При прямом наблюдении обычно изучается поведение в определенных условиях малой группы людей, следовательно, возникает вопрос о достоверности полученных данных. При этом имеет место субъективное истолкование последних. Человеческое восприятие ограниченно, поэтому исследователь может пропустить, не заметить какие-то важные проявления изучаемой ситуации. Обычно исследователь не в состоянии на основе метода наблюдений углубить полученные результаты и вскрыть интересы, мотивы, отношения, лежащие в основе определенного поведения. В ряде случаев это ограничение удается преодолеть, например изучая реакцию детей на новую игрушку. Кроме того, надо иметь в виду, что присутствие наблюдателя может оказывать влияние на наблюдаемую ситуацию. Уровень этого влияния определить чрезвычайно сложно.

Наблюдение является весьма трудоемким методом. Оформление итогов наблюдений занимает порой в два раза больше времени, чем само наблюдение. Оно должно дополнять другие методы сбора первичных данных, и применяется  тогда, когда информация, необходимая исследователю не может быть получена никакими иными способами.

Глубинное интервью заключается в последовательном задании квалифицированным интервьюером респонденту группы зондирующих вопросов, в целях понимания, почему члены группы ведут себя определенным образом или что они думают об определенной проблеме. Респонденту задаются вопросы по исследуемой теме, на которые он отвечает в произвольной форме. При этом интервьюер задает вопросы типа: «Почему вы ответили подобным образом?», «Можете ли вы обосновать вашу точку зрения?», «Можете ли вы привести какие-то специальные аргументы?». Ответы на подобные вопросы помогают интервьюеру лучше разобраться в процессах, происходящих в голове респондента.

Данный метод применяется для сбора информации о новых концепциях, дизайне, рекламе и других методах продвижения продукта; он помогает лучше разобраться в поведении потребителей, в эмоциональных и личностных аспектах жизни потребителей, в принятии решений на индивидуальном уровне, получить данные об использовании определенных продуктов.

Здесь прежде всего необходимо добиться благожелательной атмосферы при общении с опрашиваемым. Интервьюеру желательно быть внимательным как к словесному оформлению, так и к чувствам, заключенным в словах.

Самым сложным является суммирование данных индивидуальных опросов в итоговый отчет.

Анализ протокола заключается в помещении респондента в определенную ситуацию по принятию решения, при этом он должен словесно описать все факторы и аргументы, которыми он руководствовался при принятии решения.

Метод анализа протокола используется при анализе решений, принятие которых распределено во времени, например решения о покупке дома. В этом случае исследователь собирает в единое целое отдельные решения, принимаемые на его отдельных этапах.

Кроме того, данный метод используется при анализе решений, процесс принятия которых очень короток. В этом случае метод анализа протокола как бы замедляет скорость принятия решения. Например, покупая жевательную резинку, обычно люди не задумываются относительно этой покупки. Анализ протокола дает возможность разобраться в некоторых внутренних аспектах подобных покупок.

При использовании проекционных методов респонденты помещаются в определенные имитируемые ситуации в надежде на то, что респонденты выскажут такую информацию о себе, которую невозможно получить при проведении прямого опроса, например, относительно потребления наркотиков, алкоголя, получения чаевых и т.п. Можно выделить следующие конкретные методы, входящие в состав проекционных методов: ассоциативные методы, испытание при помощи завершения предложений, тестирование иллюстраций, тестирование рисунков, разыгрывание ролей, ретроспективные беседы и беседы с опорой на творческое воображение.

Почему часто используются качественные методы? Качественные методы нередко являются источниками идей. Опыт показывает, что крупномасштабные дорогостоящие количественные исследования далеко не всегда, особенно если в их основе нет перспективных идей, дают необходимые результаты.

Методы опроса. Опрос — это сбор первичной информации в форме ответов на прямые вопросы. Опрос может носить структурированный и неструктурированный характер; в первом случае все опрашиваемые отвечают на одни и те же вопросы, во втором — интервьюер задает вопросы в зависимости от полученных ответов.

При проведении опроса группа опрашиваемых людей может подвергаться однократному или многократному обследованиям. В первом случае получается срез данной группы по многим параметрам для фиксированного момента. Например, редакции журналов и газет проводят разовые выборочные исследования своих читателей по таким параметрам, как возраст, пол, уровень образования, род занятий.

Во втором случае одна и та же группа опрашиваемых людей, называемая панелью, неоднократно изучается в течение определенного периода. В этом случае часто говорят, что используется панельный метод опроса.

Достоинства методов опроса: 1) стандартизация, обусловленная тем, что всем респондентам задаются одни и те же вопросы с одинаковыми вариантами ответов на них; 2) простота, так как респондентов посещать не обязательно, можно передавать им вопросники по почте или опрашивать их по телефону, не нужно использовать технические средства и привлекать высококвалифицированных профессионалов; 3) возможность глубокого анализа, обусловленная применением последовательных уточняющих вопросов; 4) возможность табулирования и проведения статистического анализа с использованием методов математической статистики и соответствующих статистических пакетов для персональных компьютеров.

Информация от респондентов при проведении опросов собирается тремя способами: 1) интервьюеры задают вопросы респондентам, ответы на которые интервьюер фиксирует; 2) вопросы задаются с помощью компьютера; 3) путем самостоятельного заполнения анкет респондентами.

Панельный метод обследования. Панель — выборочная совокупность опрашиваемых единиц, подвергаемых повторяющимся исследованиям, причем предмет исследования остается постоянным. Членами панели могут быть семьи, организации, эксперты, которые с определенными оговорками остаются постоянными. Панельный метод опроса имеет преимущества по сравнению с обычными одноразовыми опросами, так как он дает возможность сравнивать результаты последующих опросов с итогами предыдущих и устанавливать тенденции и закономерности развития изучаемых явлений.

Все виды панелей подразделяются по: времени существования; характеру изучаемых единиц, характеру изучаемых проблем; методам получения информации.

По времени существования панели делятся на краткосрочные — существующие до года, и долгосрочные — обычно не более пяти лет.

Долгосрочные панели могут давать непрерывную либо периодическую информацию. Непрерывная информация фиксируется в Дневниках ежедневно, а сами дневники высылаются организаторам исследования через определенные промежутки времени. Периодическая информация поступает по мере проведения опросов в виде заполненных анкет.

По характеру изучаемых проблем панели могут быть специализированными. Специализированные панели создаются для изучения узких проблем. Например, с их помощью осуществляются: тестирование товаров и концепций новых товаров; отслеживание рыночных тенденций (изучается динамика показателя рыночной доли); определение источников, из которых потребители получают информацию о новых товарах.

По методу получения информации возможны четыре вида панелей, когда члены панели: 1) высылают требуемую информацию (заполненные дневники, опросные листы) почтой; 2) интервьюируются; 3) заполняют дневники или опросные листы, но собирают информацию специальные работники; 4) дают интервью через определенный промежуток времени, а внутри временного интервала высылают информацию по почте.

Целесообразность использования тех или иных панелей определяется характером решаемых задач и выделяемым объемом средств. Поэтому перед проведением опросов, исходя из целей исследования, нужно выбрать вид панели.

Типичным примером использования панельного метода опроса может служить изучение медицинского обслуживания и рынка лекарств во Франции. В панель входило 1600 врачей — каждый двадцатый врач, работающий с частной клиентурой. Члены панели выписывали в течение одной недели раз в три месяца рецепты в специальной отрывной книжке с корешками. Это позволяло одновременно получать дубликат рецепта и определенную информацию, записанную на корешке: особенности больного, диагноз, терапевтическое воздействие, ожидаемое от выписанного лекарства.

Процесс формирования панели в данном примере включал: 1) разделение территории на регионы и категории городов; 2) разделение медицинского персонала на категории по специальности и возрасту; 3) жеребьевку в каждой категории для отбора нужного числа врачей; 4) проверку выборки по многим параметрам.

2. Планирование выборочных исследований

Формирование выборки основывается на знании контура выборки, под которым понимается список всех единиц совокупности, из которых выбираются единицы выборки. Например, если в качестве совокупности рассматривать все автозаправочные станции города, то надо иметь список этих станций. Он и будет рассматриваться как контур, в пределах которого формируется выборка.

Контур выборки неизбежно содержит ошибку, называемую ошибкой контура выборки и характеризующую степень отклонения от истинных размеров совокупности. Очевидно, что может не быть полного официального списка всех автозаправочных станций большого города, включая и нелегальный бизнес в данной области.

Существуют три главные проблемы формирования выборки.

Исходя из сути рассматриваемой задачи необходимо определить, кто или что является единицей выборки. Например, производитель автомобилей решил изучить потенциальный рынок для своей продукции. Было принято решение изучить мнение по данному вопросу лиц, принимающих решения по выбору автомобилей в различных организациях, и глав семейств, определяющих данную политику в семье. В указанном примере единицы выборки — это руководители соответствующих служб организаций и главы семейств.

Важно определить контур выборки. Например, список всех предприятий определенного региона. В целях выполнения правила репрезентативности, то есть представительности проводимого исследования, необходимо тщательно подобрать метод, с помощью которого выбираются единицы выборки из контура выборки, и. спланировать структуру выборки.

Кроме того, необходимо определить объем выборки, то есть число изучаемых единиц. Обоснованный объем выборки не зависит от размера совокупности. Например, для отдельного региона он может быть не больше, чем для государства в целом, хотя сами единицы выборки должны отбираться по разным планам.

При формировании выборки предпочтительно использовать вероятностные, то есть случайные методы. Если все единицы выборки имеют определенную вероятность быть включенными в выборку, то выборка называется случайной. Нередко из-за невозможности точного определения размера совокупности нельзя точно рассчитать вероятности. Поэтому применение термина «известная вероятность» далеко не всегда обосновано.

Вероятностные методы включают: простой случайный отбор, систематический отбор, кластерный отбор и стратифицированный отбор.

Простой случайный отбор предполагает, что вероятность быть избранным в выборку известна и одинакова для всех единиц совокупности. Вероятность быть включенным в выборку определяется отношением объема выборки к размеру совокупности. Простой случайный отбор может осуществляться с помощью таблиц или генераторов случайных чисел.

Могут использоваться генераторы случайных чисел, имеющиеся в средствах электронных офисов. Единицам совокупности присваивают порядковые номера, после чего генерируются случайные числа в диапазоне всей генеральной совокупности. Количество чисел должно быть равно объему выборки.

Особенно широко метод систематического отбора используется, когда для различных видов совокупностей имеются различные справочники, списки, спецификации, например справочники телефонных номеров.

Кластерный отбор основан на делении совокупности на подгруппы. К сожалению, методологические ошибки в применении кластерного отбора чрезвычайно широко распространены, они проникли даже в популярные учебники. При кластерном отборе необходимо основываться на большой совокупности статистических данных и методах прикладной статистики — кластерном и дискриминантном анализе.

Предположим, что исследуется мнение населения страны относительно какой-либо проблемы. Страна разбивается на четко определяемые части — 89 регионов. По каждому региону подбираются данные статистики о показателях, которые могут влиять на мнение населения по проблеме.

С помощью кластерного и дискриминантного анализа регионы группируются в группы — кластеры по близости характеристик. Далее в простейшем случае можно ограничиться выбором в каждом кластере одного из регионов случайным образом. Затем необходимо определить совокупность для отобранных регионов и проводить в них соответствующее исследование, а выводы обобщить для всей страны.

Формирование выборки можно осуществить на основе двухступенчатого подхода, использующего двухступенчатую кластеризацию. При этом, например, каждый кластер может быть разбит на более мелкие и более однородные кластеры.

В основе всех описанных методов лежит предположение, что любая совокупность характеризуется симметричным распределением ее ключевых характеристик, то есть каждая выборка достаточно полно характеризует всю совокупность, различные крайности в выборке уравновешивают друг друга. Такая ситуация встречается не часто. Например, рыночный потенциал определенного региона для какого-то товара неоднороден. Население больших, средних и малых городов, сельской местности региона может отличаться по уровню образования, дохода, образу жизни.

В случае несимметричного распределения совокупности последняя разделяется на различные подгруппы — страты, например по уровню доходов, и выборки формируются из этих подгрупп, по сути дела являющихся сегментами рынка. Такой метод носит название стратифицированного отбора. Для него следует выбрать признаки, характеризующие каждую единицу совокупности, например уровень дохода. Далее для каждой страты с помощью случайного отбора формируется выборка.

Если размер выборки для определенной страты пропорционален размеру страты по отношению ко всей совокупности, то выборка называется пропорционально стратифицированной. В случае непропорционально стратифицированной выборки необходимо использовать весовые коэффициенты, уравновешивающие размеры страт. Вероятностно обоснованная стратификация строится на основе кластерного и дискриминантного анализа.

Систематический отбор имеет место при последовательном формировании нескольких выборок с целью постепенного уточнения получаемых данных.

Формирование выборки может осуществляться следующими этапами: 1) определение соответствующей совокупности; 2) получение «списка» совокупности; 3) определение структуры выборки; 4) определение методов доступа к совокупности; 5) определение и подготовка организационного обеспечения нужной численности выборки; 6) проверка выборки на соответствие требованиям проводимого исследования.

Определение объема выборки. На практике используется множество методов определения объема выборки. Обоснованными являются только вероятностный метод и метод экспертной оценки.

С помощью методов математической статистики может быть определен вероятностно обоснованный объем выборки, позволяющий получить данные с определенной точностью и достоверностью.

В статистике изменчивость признака, как известно, характеризуется его вариацией. Вариация — это степень несхожести измерений признака, например ответов респондентов на определенный вопрос.

В качестве меры вариации обычно принимается среднеквадратичное отклонение, которое характеризует отличие отдельных величин признака от средней величины. Эту меру вариации называют в разных случаях также стандартной ошибкой, стандартным отклонением.

Напомним, кроме того, необходимое в оценках понятие «доверительный интервал», который представляет собой диапазон величин признака, куда попадает определенный процент измерений или ответов на вопрос. Доверительный интервал прямо пропорционален стандартному отклонению и тем шире, чем выше доверительная вероятность, к которой по мере роста объема выборки приближается доля попадающих в интервал ответов, величин измерений.

Значительная часть данных имеет нормальный закон распределения. Свойства нормального распределения определяют диапазон отклонений доверительного интервала в единицах величины стандартного отклонения, то есть квантиль распределения, в зависимости от величины доверительной вероятности (табл. 3.1).

Таблица 3.1

Значение отклонения доверительного интервала ±z от среднего значения в зависимости от доверительной вероятности Р результатов

P,%

60

70

80

90

95

97

99

99,73

z

0,84

1,03

1,29

1,65

1,96

2,18

2,58

3,0


Часто, располагая некоторой информацией о характере вариации изучаемого признака, минимальный размер выборки определяют на основе классического метода определения параметра случайной функции с заданной точностью следующим образом:

,                                                  (3.1)

где  – объем выборки, необходимый и достаточный для оценки среднего значения признака,  – квантиль нормального распределения,  – стандартное отклонение признака,  – задаваемая требованиями исследования ошибка определения признака.

Пример. Средняя контрактная цена товара составляет 1000 руб. Известно, что стандартное отклонение цены в контрактах 100 руб. Определим число сделок, за которыми необходимо проследить для оценки средней контрактной цены с точностью до 3%.

Допустимая абсолютная ошибка  руб. В табл. 3.1 находим значение квантили распределения, соответствующей доверительному интервалу 97%, то есть ошибке в 3%. Оно составит 2,58. По формуле (3.1) подсчитываем объем выборки:

.

Таким образом, необходимо проследить за 74 случайным образом выбранными сделками, чтобы среднюю контрактную цену товара можно было с погрешностью до 3% считать равной средней цене в этих 74 сделках.

Часто бывает необходимо оценивать выбор потребителей, избирателей с определенной точностью по данным выборочного опроса. В таких случаях размер выборки оценивается следующим образом:

,                                       (3.2)

где  – объем выборки, необходимый и достаточный для оценки вероятности выбора с относительной погрешностью не выше установленной,  – квантиль нормального распределения, соответствующая заданной погрешности,  – частость выбора,  – задаваемая относительная погрешность.

Пример. Предварительное разведочное исследование показало, что за кандидата на пост президента собираются проголосовать 10% избирателей, то есть вероятность их выбора, которая оценивается частостью, составляет 0,10. Определить размер выборки избирателей, которых надо опросить, чтобы оценить вероятность выбора этого кандидата с относительной погрешностью не более 5%.

В табл. 3.1 находим значение квантили распределения, соответствующей доверительному интервалу 95%, то есть ошибке в 5%, или 0,05. Оно составит 1,96. По формуле (3.2) подсчитываем объем выборки:

.

Таким образом, необходимо опросить около 14 тыс. человек, для того чтобы оценить вероятность выбора с погрешностью не более 5 %.

Если допустить погрешность 10%, то размер выборки можно сократить до 3025 избирателей. Если 10% из них, то есть 302–303 человека, выберут рассматриваемого кандидата, то вероятность его победы на выборах можно оценить следующим образом. Минимальная вероятность может составить 10–10 * 10/100 = 9%, а максимальная – 10 + 10 * 10/100 = 11%.

Из примеров видно, что размеры выборок минимальны, если предполагается оценивать среднее значение какой-либо одной характеристики.

Заключение

 

Планирование представляет собой необходимое условие эффективного управления на предприятии. Планирование в свою очередь строится на основе прогнозирования и оба этих этапа основываются на информации, которая может быть получена с использованием первичных и вторичных данных. Большой объем вторичных данных можно получить, используя электронные базы данных, регулярно размещаемые международными и российскими организациями в сети Интернет, что делает доступ к этой информации легким и дешевым. Особо хотелось бы отметить сервер Госкомстата России содержащий информацию столь необходимую в практике прогнозирования и планирования. Для сбора первичной информации наиболее целесообразно использовать методы опроса, так как эти методы наиболее стандартизированы, просты для выполнения, позволяют производить глубокий анализ при наличии необходимого числа уточняющих вопросов и самое главное позволяют проводить статистический анализ с использованием методов математической статистики и соответствующих статистических пакетов для персональных компьютеров, что в купе с повсеместной компьютеризацией дает значительное преимущество по сравнению с другими методами.

Список использованной литературы

1. Басовский Л.Е. Прогнозирование и планирование в условиях рынка. Учебное пособие. – М., Инфра-М, 1999.

2. Голубков Е.П. Маркетинговые исследования: теория, методология и практика. – М., Финпресс, 2005.

3. Котлер Ф. Основы маркетинга. Краткий курс. – М., Вильямс, 2007.



© 2010 РЕФЕРАТЫ