бесплатные рефераты

Измерение и Экономико-математические модели

8,0

0,4

2,8

0,08

3

17.7

9,9

7,7

4,6

0,6

3,0

0,08

4

17.5

63,1

8,6

4,1

0,7

2,8

0,08

6

11.3

40,3

9,9

5,2

0,8

3,1

0,08

7

14.4

28,3

7,7

7,1

0,6

3,0

0,09

8

9.4

25,2

14,6

7,2

1,2

3,2

0,11

9

11.9

47,3

9,9

4,5

0,7

3,0

0,13

10

13.9

26,8

9,3

9,4

0,8

13,1

0,11

11

8.9

25,4

14,6

6,5

1,2

3,2

0,08

12

14.5

14,2

8,0

8,5

0,7

3,2

0,13

 

 

 

4. Анализ матрицы коэффициентов парных корреляций для  абсолютных величин

 

                                                             Таблица 5

№ фактора

Y

X1

X2

X3

X4

X5

X6

Y

1.00

0.52

-0.22

-0.06

-0.23

0.44

0.12

X1

0.52

1.00

0.38

0.52

0.38

0.74

0.60

X2

-0.22

0.38

1.00

0.91

1.00

0.68

0.74

X3

-0.06

0.52

0.91

1.00

0.91

0.86

0.91

X4

-0.23

0.38

1.00

0.91

1.00

0.67

0.74

X5

0.44

0.74

0.68

0.86

0.67

1.00

0.85

X6

0.12

0.60

0.74

0.91

0.74

0.85

1.00

 

            Из таблицы 4 находим тесно коррелирующие факторы. Налицо мультиколлениарность факторов Х2 и Х4 . Оставим только один фактор Х2 . Так же достаточно высокий коэффициент корреляции ( 0.91 ) между факторами Х2 и Х3 . Избавимся от фактора Х3 .

 

5. Построение уравнения регрессии для  абсолютных величин

 

            Проведём многошаговый регрессионный анализ для оставшихся факторов : Х1 , Х2 , Х5 , Х6 .

 

а) Шаг первый .

 

Y = 12. 583 + 0 * X1 + 0.043 * X2 + 0.021 * X5 - 0.368 * X6

 

Коэффициент множественной корреляции = 0.861

Коэффициент множественной детерминации = 0.742

Сумма квадратов остатков = 32.961

t1 = 0.534 *

t2 = 2.487

t5 = 2.458

t6 = 0.960 *

У фактора Х1 t-критерий оказался самым низким . Следовательно фактором Х1 можно пренебречь . Вычеркнем этот фактор .

 

б) Шаг второй.

 

Y = 12.677 - 0.012 * X2 + 0.023 * X5 - 0.368 * X6

 

Коэффициент множественной корреляции = 0.854

Коэффициент множественной детерминации = 0.730

Сумма квадратов остатков = 34.481

t2 = 2.853

t5 = 3.598

t6 = 1.016 *

У фактора Х6 t-критерий оказался самым низким . Следовательно фактором Х6 можно пренебречь . Вычеркнем этот фактор .

 

в) Шаг третий .

 

Y = 12.562 - 0.005 * X2  + 0.018 * X5

 

Коэффициент множественной корреляции = 0.831

Коэффициент множественной детерминации = 0.688

Сумма квадратов остатков = 39.557

t2 = 3.599

t5 = 4.068

 

            В результате трёхшаговой регрессии мы получили рабочее уравнение.

 

6. Анализ матрицы коэффициентов парных корреляций для  относительных величин

                                                              Таблица 5

№ фактора

Y

X1

X2

X3

X4

X5

X6

Y

1.00

0.14

-0.91

0.02

-0.88

-0.01

-0.11

X1

0.14

1.00

-0.12

-0.44

-0.17

-0.09

0.02

X2

-0.91

-0.12

1.00

-0.12

0.98

-0.01

-0.38

X3

0.02

-0.44

-0.12

1.00

0.00

0.57

0.34

X4

-0.88

-0.17

0.98

0.00

1.00

0.05

-0.05

X5

-0.01

-0.09

-0.01

0.57

0.05

1.00

0.25

X6

-0.11

0.02

-0.38

0.34

-0.05

0.25

1.00

 

В таблице выявляем тесно коррелирующие факторы. Таким образом, не трудно заметить достаточно высокий коэффициент корреляции между факторами Х2 и Х4. Избавимся от Х2  

 

 

 

7. Построение уравнения регрессии для  относительных величин

 а) Шаг первый .

 

Y =  25,018+0*Х1+

 

Коэффициент множественной корреляции = 0,894

Коэффициент множественной детерминации = 0.799

Сумма квадратов остатков =  26,420

t1 = 0,012*

t2 = 0,203*

t3 =0.024*

t4 =4.033

t5 = 0.357*

t6 = 0.739 *

У фактора Х1 t-критерий оказался самым низким . Следовательно фактором Х1 можно пренебречь . Вычеркнем этот фактор .

 

б) Шаг второй .

 

Y = e ^3.141 * X2^(-0.722) * X5^0.795 * X6^(-0.098)

 

Коэффициент множественной корреляции = 0.890

Коэффициент множественной детерминации = 0.792

Сумма квадратов остатков = 0.145

t2 = 4.027

t5 = 4.930

t6 = 0.623 *

У фактора Х6 t-критерий оказался самым низким . Следовательно фактором Х6 можно принебречь . Вычеркнем этот фактор .

 

в) Шаг третий .

 

Y = e ^3.515 * X2^(-0.768) * X5^0.754

 

Коэффициент множественной корреляции = 0.884

Коэффициент множественной детерминации = 0.781

Сумма квадратов остатков = 0.153

t2 = 4.027

t5 = 4.930

 

            В результате трёхшаговой регрессии мы получили рабочее уравнение :

 

Y = 

 

 

         Экономический смысл модели :

 

            При увеличении расходов на подготовку и освоение производства производительность труда будет увеличиваться . Это означает что на данных предприятиях есть резервы для расширения производства , для введения новых технологий и инноваций с целью увеличения прибыли .

            При увеличении заработной платы производительность труда будет снижаться . Это , скорее всего , будет происходить из-за того , что рабочие на  данных предприятиях получают и так высокие зарплаты , либо фонд заработной платы используется по максимуму и дальнейший его рост приведёт к непредвиденным расходам .

 

 

8. Сравнительный анализ линейной и степенной моделей

 

            Сравнивая линейную и степенную регрессионную модель видим , что статистические характеристики степенной модели превосходят аналогичные характеристики линейной модели . А именно : коэффициент множественной детерминации  у  степенной  модели  равен 0.781 , а  у  линейной - 0.688 .  Это означает , что факторы , вошедшие в степенную модель , объясняют изменение производительности труда на 78.1 % , тогда как факторы , вошедшие в  линейную модель , - на 68,8 % ; сумма квадратов остатков степенной модели ( 0.153 ) значительно меньше суммы квадратов остатков линейной модели ( 39.557 ) . Следовательно значения полученные с помощью степенной модели близки к фактическим .

 

 

 

 

 

 

 

 

 

 

 


Страницы: 1, 2, 3


© 2010 РЕФЕРАТЫ