бесплатные рефераты

Методы прогнозирования финансовых показателей

3 кв.

 

1,0302

1,0242

2,0544

0,6848

0,913825

4 кв.

1,0845

1,1199

1,0996

3,304

1,1013

1,330358

 

 

 

 

Сумма

3,0839

4

 

 

 

 

0,9161

0,229

 

 

 

Фактический объем расходов

Сезонная компонента

Десезонолизированный объем продаж

 

Y

S

Y/S

1 кв. 1999 г.

24518

0,912225

26877,14106

2 кв. 1999 г.

23778

0,843591667

28186,62267

3 кв. 1999 г.

25143

0,913825

27514,02074

4 кв. 1999 г.

27622

1,330358333

20762,82706

1 кв. 2000 г.

26149

0,912225

28665,07715

2 кв. 2000 г.

24123

0,843591667

28595,58831

3 кв. 2000 г.

27580

0,913825

30180,83331

4 кв. 2000 г.

30854

1,330358333

23192,2477

1 кв. 2001 г.

29147

0,912225

31951,54704

2 кв. 2001 г.

26478

0,843591667

31387,22328

3 кв. 2001 г.

30159

0,913825

33003,03669

4 кв. 2001 г.

33149

1,330358333

24917,34683

1 кв. 2002 г.

32451

0,912225

35573,46049

 

 

 

 

 

 

 

 

 

 Методы прогнозирования финансовых показателей  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Расчет ошибок

 

         Ошибки прогнозируемых объемов расходов расчитывают по формуле:

 

E =A/(T*S)

 

Объем расходов

Сезонная компонента

Тренд

Ошибка

1 кв. 1999 г.

24518

0,912225

26877,1411

1

2 кв. 1999 г.

23778

0,84359167

28186,6227

1

3 кв. 1999 г.

25143

0,913825

27514,0207

1

4 кв. 1999 г.

27622

1,33035833

20762,8271

1

1 кв. 2000 г.

26149

0,912225

28665,0771

1

2 кв. 2000 г.

24123

0,84359167

28595,5883

1

3 кв. 2000 г.

27580

0,913825

30180,8333

1

4 кв. 2000 г.

30854

1,33035833

23192,2477

1

1 кв. 2001 г.

29147

0,912225

31951,547

1

2 кв. 2001 г.

26478

0,84359167

31387,2233

1

3 кв. 2001 г.

30159

0,913825

33003,0367

1

4 кв. 2001 г.

33149

1,33035833

24917,3468

1

1 кв. 2002 г.

32451

0,912225

35573,4605

1

 

         Можно предположить, что величина ошибки второго прогноза будет несколько ниже чем первого.

 

 

3. Прогноз методом скользящей средней и экспоненциального сглаживания.

         Для предсказаний значений временного ряда можно использовать более простую методику.

При расчете скользящей средней Ytnp c (m) все m значений параметра Y за m моментов времени учитываются с одинаковым весовым коэффициентом 1/m что   не   всегда  обосновано.   Для   прогнозирования   технико – экономических трендов момент времени, в котором наблюдалось значение параметра Y, играет решающее значение. Естественно предположить, что за­висимость во временных рядах постепенно ослабевает с увеличением перио­да между двумя соседними точками. Так, если зависимость прогнозируемою параметра Yt представляется более сильной от значения Yt-1, чем от Yt-s  то

наблюдениям временного ряда следует придавать веса, которые должны уменьшаться но мере удаления oт фиксированного момента времени t. Это обстоятельство учитывается в методе экспоненциального сглаживания. Таким образом, при вычислении .ко экспоненциальной средней используются лишь предшествующая экспоненциальная средняя и последнее наблюдение, а все предыдущие наблюдения игнорируются.

Например, пусть необходимо дать прогноз для t-=8 но данным следую­щего временного ряда: 1) методом скользящей средней для m=3, m =4$ 2) методом экспоненциального о сглаживания для   Методы прогнозирования финансовых показателей =0,2; 0,6.

 

1 кв. 1999 г.

24518

2 кв. 1999 г.

23778

3 кв. 1999 г.

25143

4 кв. 1999 г.

27622

1 кв. 2000 г.

26149

2 кв. 2000 г.

24123

3 кв. 2000 г.

27580

4 кв. 2000 г.

30854

1 кв. 2001 г.

29147

2 кв. 2001 г.

26478

3 кв. 2001 г.

30159

4 кв. 2001 г.

33149

1 кв. 2002 г.

32451

 

 

Метод скользящей средней

Y14пр с(3) = (30159+33149+32451)/3=31919,67

 

Y14пр с (13) = (24518+23778+25143+27622+26149+24123+27580+30854+29147+ 26478+30159+33149+32451)/13 = 27780,846

 

Метод экспоненциального сглаживания

 

 

0,2

погрешность

1 кв. 1999 г.

24518

#Н/Д

#Н/Д

2 кв. 1999 г.

23778

23778

#Н/Д

3 кв. 1999 г.

25143

24870

#Н/Д

4 кв. 1999 г.

27622

27071,6

#Н/Д

1 кв. 2000 г.

26149

26333,52

1851,838704

2 кв. 2000 г.

24123

24565,1

2106,426154

3 кв. 2000 г.

27580

26977,02

2223,149967

4 кв. 2000 г.

30854

30078,6

3109,499653

1 кв. 2001 г.

29147

29333,32

2886,08454

2 кв. 2001 г.

26478

27049,06

2831,47259

3 кв. 2001 г.

30159

29537,01

2496,160001

4 кв. 2001 г.

33149

32426,6

3207,855423

1 кв. 2002 г.

32451

 

 

 

 

  Методы прогнозирования финансовых показателей

 

 

 

0,6

погрешность

1 кв. 1999 г.

24518

#Н/Д

#Н/Д

2 кв. 1999 г.

23778

23778

#Н/Д

3 кв. 1999 г.

25143

24324

#Н/Д

4 кв. 1999 г.

27622

25643,2

#Н/Д

1 кв. 2000 г.

26149

25845,52

2081,334719

2 кв. 2000 г.

24123

25156,51

2167,926259

3 кв. 2000 г.

27580

26125,91

1741,283327

4 кв. 2000 г.

30854

28017,14

3224,65661

1 кв. 2001 г.

29147

28469,09

3136,065979

2 кв. 2001 г.

26478

27672,65

3032,922749

3 кв. 2001 г.

30159

28667,19

1951,31804

4 кв. 2001 г.

33149

30459,91

3174,532132

1 кв. 2002 г.

32451

 

 

 

 Методы прогнозирования финансовых показателей

 

рис. 8.

Число членов скользящей средней m и параметр -экспоненциального сглаживания ( Методы прогнозирования финансовых показателей определяется статистикой исследуемою процесса. Чем мень-ше m и чем больше , тем сильнее peaгирует пpoгноз на колебания временно­го ряда, и наоборот, чем больше m и чем меньше  Методы прогнозирования финансовых показателей , чем более инерционным является процесс прогнозирования. Для подбора оптимального параметра прогнозирования необходимо провести сглаживание временною ряда с по­мощью нескольких различных значений параметра m или  Методы прогнозирования финансовых показателей  затем опреде­лить среднюю ошибку прогнозов и выбрать параметр, соответствующий минимальной ошибке.

 

 


Страницы: 1, 2, 3


© 2010 РЕФЕРАТЫ