бесплатные рефераты

Архитектура промышленной сети BitBus

2.8.2 Контроль достоверности

Особо сильная помеха может вклиниться в посылку, исказить управляющие символы или данные в ней, а то и вовсе уничтожить ее. Кроме того, одно из подключенных к линии устройств (абонент) может выйти из строя и перестать отвечать на запросы. На случай такой беды существуют контрольная сумма, тайм-ауты и квитирование.

Контрольная сумма - в общем случае 1-2 байта кода, полученного некоторым преобразованием из данных посылки. Самое простое - "исключающее или" всем байтам данных. Контрольная сумма рассчитывается и включается в посылку перед отправкой. Принимающее устройство производит ту же операцию над принятыми данными и сверяет рассчитанную контрольную сумму с полученной. Если посылка была повреждена, то, скорее всего, они не совпадут. В случае применения ASCII протокола - код контрольной суммы также передается ASCII-символами.

Тайм-аут - максимальное время ожидания ответа от запрашиваемого устройства. Если посылка была повреждена или запрашиваемое устройство вышло из строя, то ведущее устройство не повиснет в ожидании ответа, а по истечении определенного времени признает наличие сбоя. После чего можно еще пару раз повторить запрос и, если сбой повторяется, перейти на отработку аварийной ситуации. Тайм-аут отсчитывается с момента завершения передачи запроса. Его длительность должна с небольшим запасом превышать максимальное время ответной передачи плюс время, необходимое на обработку запроса и формирование ответа. Ведомому устройству тоже не помешает отработка тайм-аутов. Особенно в ситуациях, когда отсутствие регулярного обновления данных или новых команд от ведущего устройства критично для работы устройств системы. Самая простая реализация для ведомого - сброс сторожевого таймера по приему посылки. Если по какой-либо причине данные перестали поступать - устройство сбросится по переполнению сторожевого таймера. После сброса устанавливается безопасный режим до приема первой команды.

Квитирование - подтверждение доставки (квитанция). Когда важно, чтобы ведомый обязательно получил данные или команду, возникает необходимость проконтролировать получение им посылки. Ведущее устройство, отправив ведомому данные, ждет ответа с подтверждением. Ведомое устройство, получив данные, в случае их корректности посылает ответ, подтверждающий доставку. Если по истечении тайм-аута ведущее устройство не получает подтверждение, делается вывод о сбое в связи или в ведомом устройстве. Дальше обычные меры - повтор посылки. Но тут есть нюанс: повреждена и не получена может быть сама квитанция. Ведущее устройство, не получив квитанцию, повторяет посылку, и ведомое отрабатывает ее повторно. Не всегда это существенно, но если перепосылалась команда типа "увеличить параметр на 1" это может привести к незапланированному двойному увеличению параметра. В таком случае надо предусмотреть что-нибудь типа циклической нумерации посылок, чтобы ведомое устройство отличало повторные посылки от новых и не отрабатывало их.

2.9 Защита устройств от перенапряжений в линии связи

Разность потенциалов между проводниками линии и между линией и "землей" приемопередатчика, как правило, не должна выходить за пределы -7...+12 В. Следовательно, может потребоваться защита от разности потенциалов между "землями" и от перенапряжений из-за замыкания на высоковольтные цепи.

- Разность потенциалов между "землями".

При организации сети на основе интерфейса RS-485 следует учитывать неявное присутствие третьего проводника - "земли". Ведь все приемопередатчики имеют питание и "землю". Если устройства расположены недалеко от начального источника питания, то разность потенциалов между "землями" устройств в сети невелика. Но если устройства находятся далеко друг от друга и получают местное питание, то между их "землями" может оказаться существенная разность потенциалов. Возможные последствия - выход из строя приемопередатчика, а то и всего устройства. В таких случаях следует применять гальваническую развязку или дренажный провод.

Гальваническая развязка линии и устройств осуществляется либо опторазвязкой цифровых сигналов (RO, DI, RE, DE) с организацией изолированного питания микросхем приемопередатчиков, либо применением приемопередатчиков со встроенной гальванической развязкой сигналов и питания (например, MAX1480). Тогда вместе с дифференциальными проводниками прокладываются провод изолированной "земли" (сигнальной "земли") и, возможно, провод изолированного питания линии, рисунок 2.11.

Дренажный провод - провод, прокладываемый вместе с витой парой и соединяющий "земли" удаленных устройств. Через этот провод уравниваются потенциалы "земель". При включении устройства в линию дренажный провод следует подсоединять первым, а при отключении - отсоединять последним. Для ограничения тока через дренажный провод его заземляют в каждом устройстве через резистор в 100 Ом (0.5 Вт).

Рис. 2.11. Гальваническая развязка линии.

- Замыкание на высоковольтные цепи.

Если существует опасность попадания на линию или одну из местных "земель" высокого напряжения, следует применять опторазвязку или шунтирующие ограничители напряжения. А лучше и то и другое.

Напряжение пробоя опторазвязанного интерфейса составляет сотни и даже тысячи вольт. Это хорошо защищает устройство от перенапряжения, общего для всех проводников линии. Однако, при дифференциальных перенапряжениях, когда высокий потенциал оказывается на одном из проводников, сам приемопередатчик будет поврежден.

Для защиты от дифференциальных перенапряжений все проводники линии, включая изолированный общий, шунтируются на локальные "земли" при помощи ограничителей напряжения. Это могут быть варисторы, полупроводниковые ограничители напряжения и газоразрядные трубки. Физический принцип их действия разный, но суть одна - при напряжении выше порогового их сопротивление резко падает, и они шунтируют линию. Газоразрядные трубки могут шунтировать очень большие токи, но имеют высокий порог пробоя и низкое быстродействие, поэтому их лучше применять по трехступенчатой схеме вместе с полупроводниковыми ограничителями. Когда заземление линии невозможно, проводники линии шунтируют ограничителями между собой. Но это защитит только от дифференциальных перенапряжений - защиту от общего должна взять на себя опторазвязка, рисунок 2.12.

Рис. 2.12. Защита от перенапряжений.

Защита ограничителями напряжения действенна при кратковременных перенапряжениях. При длительных - токи короткого замыкания могут вывести ограничители из строя, и устройства на линии окажутся без защиты. Для защиты от коротких замыканий в линию можно последовательно включить плавкие предохранители.

2.10 Дополнительные меры защиты от помех

- Диагностика.

Если есть возможность выбора маршрута прокладки кабеля с замером уровня помех - не стоит ей пренебрегать. Даже если программная коррекция ошибок успешно справляется со сбоями, нужно сделать все, чтобы физически снизить уровень помех в линии. Полезно предусмотреть в программе диагностический режим, в котором накапливалась бы статистика сбоев, отрабатываемых программной коррекцией (провал по контрольной сумме или тайм-ауту). Если сбоев слишком много, желательно поработать над поиском и устранением их причины. Снижение скорости связи (бодрейта) во многих случаях повышает помехоустойчивость. Не имеет смысла устанавливать скорость обмена больше, чем необходимо для нормальной работы системы, если только не требуется запас на модификацию.

- Прокладка кабеля.

По возможности не следует проводить витую пару вдоль силовых кабелей, тем более в общей оплетке, так как существует опасность наводок от силовых токов через взаимную индуктивность. Силовое оборудование, коммутирующее большие токи, также является источником помех. Сигнальные цепи питания оптоизолированной линии лучше не использовать для питания чего-либо еще, так как протекающие по сигнальной "земле" лишние токи могут вносить в линию дополнительный шум. Некачественная витая пара с асимметричными характеристиками проводников - еще один источник проблем. Чем меньше шаг витой пары (чаще перевиты провода) - тем лучше. Даже если не применяется опторазвязанная линия или дренаж, стоит сразу провести кабель с запасной витой парой - на случай, если произойдет обрыв первой или все же понадобится провести сигнальную землю.

- Экранирование и заземление.

В промышленных условиях, тяжелых в плане электромагнитного шума, рекомендуется применять экранированный кабель с витой парой. Экран, охватывающий проводники линии, защищает их от паразитных емкостных связей и внешних магнитных полей. Экран следует заземлять только в одной из крайних точек линии. Заземление в нескольких точках недопустимо: из-за разности потенциалов местных "земель" по экрану могут протекать существенные токи, которые будут создавать наводки на сигнальные проводники. Некоторые разработчики рекомендуют для защиты от радиопомех дополнительно включать в нескольких местах между экраном и заземлением специальные высокочастотные конденсаторы емкостью 1...10 нФ.

- Индуктивные фильтры.

Если в линию все же попадают высокочастотные помехи, их можно отсеять индуктивными фильтрами, рисунок 2.13. Существуют специальные индуктивные фильтры, предназначенные для подавления высокочастотных помех в линиях связи. Они последовательно включаются в линию непосредственно у приемников. Например, B82790-S**** фирмы Epcos, выполненный в виде четырехполюсника, через который витая пара подсоединяется к приемнику.

Рис. 2.13. Индуктивный фильтр.

3. Разводка сетей RS-485

RS-485 передает цифровую информацию между многими объектами. Скорость передачи данных может достигать 10 Мбит/с, а иногда и превышать эту величину. RS-485 предназначен для передачи этой информации на значительные расстояния, и 1000 метров хорошо укладывается в его возможности. Расстояние и скорость передачи данных, с которыми RS-485 может успешно использоваться, зависят от многих моментов при разработке схемы межсоединений системы.

3.1 Кабель

RS-485 спроектирован как балансная система. Проще говоря, это означает, что, помимо земляного, имеется два провода, которые используются для передачи сигнала, рисунок 3.1.

Рис. 3.1. Балансная система использует, помимо земляного, два провода для передачи данных.

Система называется балансной, потому что сигнал на одном проводе является идеально точной противоположностью сигнала на втором проводе. Другими словами, если один провод передает высокий уровень, другой провод будет передавать низкий уровень, и наоборот, рисунок 3.2.

Рис. 3.2. Сигналы на двух проводах балансной системы идеально противоположны.

Несмотря на то, что RS-485 может успешно осуществлять передачу с использованием различных типов передающей среды, он должен использоваться с проводкой, обычно называемой "витая пара".

Как следует из ее названия, витая пара - это просто пара проводов, которые имеют равную длину и свиты вместе. Использование передатчика, отвечающего требованиям спецификации RS-485, с кабелем на основе витой пары, уменьшает два главных источника проблем для разработчиков быстродействующих территориально распределенных сетей, а именно излучаемые электромагнитные помехи и индуцируемые электромагнитные помехи (наводка).

3.2 Излучаемые электромагнитные помехи

Как показано на рисунке 3.3., всякий раз, когда для передачи информации используются импульсы с крутыми фронтами, в сигнале присутствуют высокочастотные составляющие. Эти крутые фронты нужны при более высоких скоростях, чем способен обеспечить RS-485.

Рис. 3.3. Форма сигнала последовательности прямоугольных импульсов с частотой 125 кГц и ее БПФ

Полученные в итоге высокочастотные компоненты этих крутых фронтов вместе с длинными проводами могут привести к излучению электромагнитных помех (EMI). Балансная система, использующая линии связи на основе витой пары, уменьшает этот эффект, делая систему неэффективным излучателем. Это работает на очень простом принципе. Поскольку сигналы на линиях равны, но инверсны, излучаемые от каждого провода сигналы будут также иметь тенденцию быть равными, но инверсными. Это создает эффект подавления одного сигнала другим, что, в свою очередь, означает отсутствие электромагнитного излучения. Однако, это основано на предположении, что провода имеют точно одинаковую длину и точно одинаковое расположение. Поскольку невозможно одновременно иметь два провода абсолютно одинаково расположенными, провода должны быть близко друг к другу насколько возможно. Скручивание проводов помогает нейтрализовать любое остаточное электро-магнитное излучение из-за конечного расстояния между двумя проводами.

3.3 Индуцируемые электромагнитные помехи

Индуцируемые электромагнитные помехи - в основном та же самая проблема, что и излучаемые, но наоборот. Межсоединения, используемые в системе на основе RS-485, также действуют как антенна, которая получает нежелательные сигналы. Эти нежелательные сигналы могут искажать полезные сигналы, что, в свою очередь, может привести к ошибкам в данных. По той же самой причине, по которой витая пара помогает предотвращать излучение электромагнитных помех, она также поможет снизить влияние наводимых электромагнитных помех. Поскольку два провода расположены вместе и скручены, шум, наведенный на одном проводе будет иметь тенденцию быть тем же самым, что и наведенный на втором проводе. Этот тип шума называют "синфазным шумом". Поскольку приемники RS-485 предназначены для обнаружения сигналов, которые являются противоположностью друг друга, они могут легко подавлять шум, который является общим для обоих проводов.

3.4 Волновое сопротивление витой пары

В зависимости от геометрии кабеля и материалов, используемых в изоляции, витая пара будет обладать соответствующим "волновым сопротивлением (характеристическим импедансом)", которое обычно определяется ее производителем. Спецификация RS-485 рекомендует, но явно не навязывает, чтобы это волновое сопротивление было равно 120 Ом. Рекомендация этого импеданса необходима для вычисления наихудшей нагрузки и диапазонов синфазных напряжений, определенных в спецификации RS-485. По всей видимости, спецификация не диктует этот импеданс в интересах гибкости. Если по каким-либо причинам не может использоваться 120-омный кабель, рекомендуется, чтобы наихудший вариант нагрузки (допустимое число передатчиков и приемников) и наихудшие диапазоны синфазных напряжений были повторно рассчитаны, дабы удостовериться, что проектируемая система будет работать.

3.5 Согласующие резисторы

Поскольку затронуты высокие частоты и большие расстояния, должное внимание должно быть уделено эффектам, возникающим в линиях связи. Однако, детальное обсуждение этих эффектов и корректных методов согласования далеко выходит за рамки настоящей статьи. Помня об этом, техника согласования будет кратко рассмотрена в своей простейшей форме, постольку, поскольку она имеет отношение к RS-485.

Согласующий резистор - это просто резистор, который установлен на крайнем конце или концах кабеля, рисунок 3.4. В идеале, сопротивление согласующего резистора равно волновому сопротивлению кабеля.

Рис 3.4. Согласующие резисторы должны иметь сопротивление, равное волновому сопротивлению витой пары и должны размещаться на дальних концах кабеля.

Если сопротивление согласующих резисторов не равно волновому сопротивлению кабеля, произойдет отражение, т.е. сигнал вернется по кабелю обратно. Это описывается уравнением (Rt-Zo)/(Zo+Rt), где Zo - сопротивление кабеля, а Rt - номинал согласующего резистора. Хотя, в силу допустимых отклонений в кабеле и резисторе, некоторое отражение неизбежно, значительные расхождения могут вызвать отражения, достаточно большие для того, чтобы привести к ошибкам в данных, рисунок 3.5.

Рис. 3.5. Используя схему, показанную на верхнем рисунке, сигнал слева был получен с MAX3485, нагруженным на 120-омную витую пару, и 54-омным согласующим резистором. Сигнал справа был получен при корректном согласовании с помощью 120-омного резистора.

Помня об этом, важно обеспечить максимально-возможную близость значений сопротивления согласующего резистора и волнового сопротивления. Место установки согласующего резистора так-же очень важно. Согласующие резисторы должны всегда размещаться на дальних концах кабеля.

Как общее правило, согласующие резисторы должны быть помещены на обоих дальних концах кабеля. Хотя правильное согласование обоих концов абсолютно критично для большинства системных дизайнов, можно утверждать, что в одном специальном случае необходим только один согласующий резистор. Этот случай имеет место в системе, в которой имеется единственный передатчик, и этот единственный передатчик расположен на дальнем конце кабеля. В этом случае нет необходимости размещать согласующий резистор на конце кабеля с передатчиком, поскольку сигнал всегда распространяется от этого передатчика.

3.6 Максимальное число передатчиков и приемников в сети

Простейшая сеть на основе RS-485 состоит из одного передатчика и одного приемника. Хотя это и полезно в ряде приложении, но RS-485 привносит большую гибкость, разрешая более одного приемника и передатчика на одной витой паре. Допустимый максимум зависит от того, насколько каждое из устройств загружает систему.

В идеальном мире, все приемники и неактивные передатчики будут иметь бесконечный импеданс и никогда не будут нагружать систему. В реальном мире, однако, так не бывает. Каждый приемник, подключенный к сети и все неактивные передатчики увеличивают нагрузку. Чтобы помочь разработчику сети на основе RS-485 выяснить, сколько устройств могут быть добавлены к сети, была создана гипотетическая единица, называемая "единичная нагрузка (unit load)". Все устройства, которые подключаются к сети RS-485, должны характеризоваться отношением множителей или долей единичной нагрузки. Два примера - MAX3485, который специфицирован как 1 единичная нагрузка, и MAX487, который специфицирован как 1/4 единичной нагрузки. Максимальное число единичных нагрузок на витой паре (принимая, что мы имеем дело с должным образом согласованным кабелем, имеющим волновое сопротивление 120 Ом или больше) - 32. Для приведенных выше примеров это означает, что в одну сеть могут быть включены до 32 устройств MAX3485 или до 128 MAX487.

3.7 Примеры правильных сетей

Вооружившись приведенной выше информацией, мы готовы разработать некоторые сети на основе RS-485. Вот несколько простых примеров.

3.7.1 Один передатчик, один приемник

Простейшая сеть - это один передатчик и один приемник, рисунок 3.6. В этом примере, согласующий резистор показан на кабеле на стороне передатчика. Хотя здесь это необязательно, вероятно хорошей привычкой было бы проектировать сети с обоими согласующими резисторами. Это позволят перемещать передатчик в места, отличные от дальнего конца кабеля, а также позволяет, если в этом возникнет необходимость, добавить в сеть дополнительные передатчики.

Рис. 3.6. Сеть RS-485 с одним передатчиком и одним приемником.

3.7.2 Один передатчик, несколько приемников

На рисунке 3.7. представлена сеть с одним передатчиком и несколькими приемниками. Здесь важно, чтобы расстояния от витой пары до приемников были как можно короче.

Рис. 3.7. Сеть RS-485 с одним передатчиком и несколькими приемниками.

3.7.3 Два приемопередатчика

На рисунке 3.8. представлена сеть с двумя приемопередатчиками.

Рис. 3.8. Сеть RS-485 с двумя приемопередатчиками.

3.7.4 Несколько приемопередатчиков

На рисунке 3.9. представлена сеть с несколькими приемопередатчиками. Как и в примере с одним передатчиком и несколькими приемниками, важно, чтобы расстояния от витой пары до приемников были как можно короче.

Рис. 3.9. Сеть RS-485 с несколькими приемопередатчиками.

3.8 Примеры неправильных сетей

Ниже представлены примеры неправильно сконфигурированных систем. В каждом примере сравнивается форма сигнала, полученного от некорректно разработанной сети, с формой сигнала, полученного от должным образом разработанной системы. Форма сигнала измерялась дифференциально в точках A и B (A-B).

3.8.1 Несогласованная сеть

В этом примере, рисунок 3.10., на концах витой пары отсутствуют согласующие резисторы. Поскольку сигнал распространяется от источника, он сталкивается с открытой цепью на конце кабеля. Это приводит к рассогласованию импедансов, вызывая отражение. В случае открытой цепи (как показано ниже), вся энергия отражается назад к источнику, вызывая сильное искажение формы сигнала.

Рис. 3.10. Несогласованная сеть RS-485 (вверху) и ее итоговая форма сигнала (слева) по сравнению с сигналом, полученным на правильно согласованной сети (справа).

3.8.2 Неправильное расположение терминатора

На рисунке 3.11. согласующий резистор (терминатор) присутствует, но его размещение отличается от дальнего конца кабеля. Поскольку сигнал распространяется от источника, он сталкивается с двумя рассогласованиями импеданса. Первое встречается на согласующем резисторе. Даже при том, что резистор согласован с волновым сопротивлением кабеля, есть еще кабель за резистором. Этот дополнительный кабель вызывает рассогласование, а значит и отражение сигнала. Второе рассогласование, это конец несогласованного кабеля, ведет к дополнительным отражениям.

Рис. 3.11. Сеть RS-485 с неправильно размещенным согласующим резистором (верхний рисунок) и ее итоговая форма сигнала (слева) по сравнению с сигналом, полученным на правильно согласованной сети (справа).

3.8.3 Составные кабели

На рисунке 3.12. имеется целый ряд проблем с организацией межсоединений. Первая проблема заключается в том, что драйверы RS-485 разработаны для управления только одной, правильным образом согласованной, витой парой. Здесь же каждый передатчик управляет четырьмя параллельными витыми парами. Это означает, что требуемые минимальные логические уровни не могут гарантироваться. В дополнение к тяжелой нагрузке, имеется рассогласование импедансов в точке, где соединяются несколько кабелей. Рассогласование импедансов в очередной раз означает отражения и, как следствие, искажение сигнала.

Рис. 3.12. Сеть RS-485, некорректно использующая несколько витых пар.

3.8.4 Длинные ответвители

На рисунке 3.13., кабель корректно согласован и передатчик нагружен только на одну витую пару; однако сегмент провода в точке подключения (ответвитель - stub) приемника чрезмерно длинный. Длинные ответвители вызывают значительное рассогласование импедансов и, таким образом, отражение сигнала. Все ответвители должны быть как можно короче.

Рис. 3.13. Сеть RS-485 использующая 3-метровый ответвитель (рисунок сверху) и ее итоговый сигнал (слева) по сравнению с сигналом, полученным с коротким ответвлением

4. Промышленная локальная сеть для проведения ГТИ

4.1 Станция геолого-технологических исследований

Геолого-технологические исследования (ГТИ) - это совокупность методов и средств, применяемых на буровой с целью получения достоверной информации о геологии разреза скважины и с целью оптимизации режимов бурения. ГТИ выполняется для бурения разведочных, эксплуатационных, наклонно-направленных и горизонтальных скважин.

Станция ГТИ представляет собой совокупность датчиков, систем сбора данных (ССД), обработки данных (СОД) и индикаторов. Она предназначена для автоматизации ГТИ, в том числе для регистрации технологических параметров, архивирования и документирования полученных данных, определения видов работ и нештатных ситуаций. Станция ГТИ может содержать средства индикации технологических параметров (дисплеи) и оповещения (звуковые, световые). Станция может использоваться для автоматизации работ на скважине.

Задачи станции:

– непрерывный прием сигналов от датчиков и аппаратуры газового каротажа в автоматическом режиме, забойной инклинометрической системы;

– автоматическую обработку принятых сигналов, интерпретацию полученной информации и представление ее в виде диаграмм, таблиц;

– распознавание и предупреждение на ранней стадии возникновения предаварийных и аварийных ситуаций, непредвиденных осложнений, в том числе газонефтепроявлений;

– контроль бурения, а именно углубления забоя, спуско-подъемных операций (СПО) с контролем долива скважины, цементирования;

– определение в процессе бурения литологического разреза, выделения пластов коллекторов, определение пластового давления в процессе бурения и прогноз пластового давления, прогноз и определение зон АВПД;

– определение параметров газового каротажа, продуктивности пластов коллекторов;

– построение уточненного геологического разреза по данным, полученным в процессе бурения и исследования шлама и керна (ввод данных, расчеты, печать стратиграфического разреза, шламограммы, карбонатограммы, результатов люминесцентного, битуминологического и др. анализов шлама и керна, результатов газового каротажа);

– контроль и прогноз траектории скважины;

– выполнение расчетов при решении геологических, технологических задач проводки скважины;

– визуализацию всей полученной по скважине информации на экране монитора;

– накопление и хранение всей полученной информации по скважине;

– формирование и печать отчетной документации по скважине;

– передачу получаемой информации средствами радио, сотовой или проводной связи в центр сбора;

– копирование информации по скважине для ее последующей обработки в центре сбора.

– Предоставление в режиме реального времени информации о ходе бурения представителю заказчика и различным службам (количество подключаемых рабочих мест оговаривается в договоре).

– Оперативный обмен информацией между службами.

4.2 Состав и структура станции

На рис 4.1 показана структурная схема станции ГТИ. Канал связи BITBUS позволяет подключать до 255 ССД и представляет собой интерфейс, специально разработанный и оптимизированный для связи программируемых контроллеров, управляющих ЭВМ и т.п. и интеграции этих устройств в локальную управляющую сеть распределенных АСУ ТП.

Поскольку в соответствии с теорией систем, структурные системы автоматизации строятся, как правило, подобно объектам управления, а объекты в подавляющем большинстве имеют иерархическую структуру, в основу сети BITBUS также положен иерархический принцип.

Рис 4.1. структурная схема станции ГТИ.

1 - промышленный компьютер, ведущий узел сети BITBUS; 2 - адаптер сети BITBUS для компьютера BB_ISA; 3 - ретранслятор сети BITBUS (для больших расстояний); 4 - интеллектуальное УСО с интерфейсом BITBUS; 5 - программируемый контроллер моноблочный, с интерфейсом BITBUS; 6 - программируемый контроллер магистрально-модульный, с интерфейсом BITBUS; 7 - шлюз; 8 - программируемый контроллер магистрально-модульный, с произвольным интерфейсом; 9 - интеллектуальные датчики. 10 - интеллектуальные датчики (хроматограф)

Центральным элементом сети BITBUS является ведущее устройство, функции которого, как правило, возлагаются на промышленный компьютер (1). Этот компьютер обычно выполняет несколько функций:

– инструментальное средство для программирования контроллеров;

– графическая операторская станция;

– элемент локальной сети (LAN) верхнего уровня АСУ ТП.

На практике в качестве этого элемента системы часто применяют IBM-совместимые персональные компьютеры. Интерфейс с локальной сетью BITBUS осуществляет адаптер сети BB_ISA (2), установленный в PCI слот компьютера. Как правило, применяются адаптеры, обеспечивающие гальваническую изоляцию компьютера от сети BITBUS.

Протокол BITBUS определяет два режима передачи данных по шине:

1. Синхронный режим, этот режим используется при необходимости работы на большой скорости, но на ограниченных расстояниях. В этом случае топология сети может включать до 28 узлов, а длина шины ограничиваться 30 м. Скорость может быть от 500 до 2400 кбод. Синхронный режим передачи предполагает использование двух дифференциальных сигнальных пар: одной для данных, другой для синхронизации.

2. Режим с самосинхронизацией, использование этого режима позволяет значительно удлинить шину. Стандартом определены три скорости передачи: 1500 Мбод, 375 кбод (до 300 м) и 62,5 кбод (до 1200 м). Используя шинные репитеры, можно объединять последовательно несколько шинных сегментов (до 28 узлов на сегмент). Тогда общее число узлов можно довести до 250, длину общей шины -- до нескольких километров. При этом режиме передачи используются две дифференциальные пары: одна для данных и одна для управления репитером.

На физическом уровне реализации BITBUS соответствуют спецификациям RS-485. RS-485 получил за последние годы наиболее широкое распространение в локальных сетях нижнего уровня, подтверждая правильность выбора разработчиков BITBUS. Физической средой в сети обычно является экранированная витая пара. В качестве альтернативной среды иногда применяют оптоволокно.

Сеть BITBUS может иметь различную топологию - линейную, древовидную или звездообразную, что позволяет легко приспосабливать конфигурацию сети к существующим производственным помещениям и расположению оборудования. Конфигурация сети может наращиваться и видоизменяться в процессе ее эксплуатации. В зависимости от используемой скорости передачи длина одного сегмента может быть 300 м или 1200 м. Для увеличения расстояния используются ретрансляторы (3), максимальное расстояние при этом достигает 13,2 км. Управление ретрансляторами предусмотрено в интерфейсе. Для этого используется вторая витая пара.

В данном дипломном проекте расстояние между контроллером и компьютером не будет превышать 300м, что в полнее достаточно при проведении ГТИ и ГК.

Сеть объединяет разнообразные устройства ввода-вывода - от интеллектуальных УСО (4) до программируемых контроллеров (5, 6). Контроллеры, которые не имеют штатного выхода в интерфейс BITBUS (8), подключаются через шлюзы (7).На "более низком" уровне иерархии, чем сеть BITBUS, применяются удаленные интеллектуальные датчики (9), подключаемые по последовательным каналам RS-232 или RS-485.

Основные технические данные сети BITBUS приведены в таблице 4.1.:

Таблица 4.1. Характеристики сети BitBus.

Топология

линейная или древовидная

Длина сети

от 300 м до 13,2 км

Физическая среда передачи данных

витая пара

Альтернативная Среда

оптоволокно

Основной тип разъема

D-SUB 9

Скорость передачи

375 Кбит/с или 62,5 Кбит/с

Характерное время ответа

1 мс

Канальный уровень протокола

SDLC

Максимальное количество узлов

250

4.2.1 Система сбора данных

Система сбора данных ССД предназначена для опроса и предварительной обработки сигналов с первичных датчиков технологических параметров и передачи данных в форме кода импульсного сигнала на регистрирующий комплекс.

Представляет собой подключенное к каналу связи BitBus устройство, выполнено на базе сигнального процессора ADSP-218x фирмы Analog Devis, связной контроллер TCM32F или TU2000 фирмы Tecon и устройство согласования датчиков. В ССД предусмотрена установка контроллера (вторичного) канала связи RS-485/UART. Через этот канал связи ССД может передавать информацию на показывающие приборы, к этому каналу связи можно так же подключать датчики, имеющие цифровой интерфейс (всего - до 255 устройств).

ССД размещается в стальном пылезащищенном крейте и устанавливается на буровой, поблизости от датчиков.

Интерфейс обмена данными с компьютером

RS-485

Максимальное рабочее напряжение, В

25

Входное сопротивление, кОм

100

Габаритные размеры, мм

570х510х120

Масса, кг

10

Рабочий диапазон температуры, °С

-50 … +60

Таблица 4.2. Технические характеристики ССД.

4.2.2 Асинхронный Адаптер Шины BITBUS (Master/Slave)

Модуль TPG/BB_ISA (Micro TCX) предназначен для использования в распределенных системах в качестве ведущего или ведомого устройства по промышленной шине BitBus.

Конструктивно модуль может использоваться как в PC совместимых компьютерах, так и в стандарте MicroPC, в зависимости от сборки.

Модуль TPG/BB_ISA выполнен на основе микропроцессора DS80C320 семейства MCS-51, имеет гальваническую развязку от локальной сети и возможность аппаратного сброса посредством команды от PC. На плате предусмотрено подключение терминирующих резисторов (120 Ом) с помощью перемычек. Для работы адаптер TPG/BB_ISA использует 8 последовательных адресов в пространстве ввода/вывода.

Базовый адрес задается с помощью трех перемычек на плате. Обмен данными между модулем и PC осуществляется по опросу готовности адаптера или по прерыванию.

Поддержка протокола BitBus обеспечивается встроенным программным обеспечением, которое можно обновлять с помощью стандартных средств как удалённо, по шине, так и через порты ввода/вывода. Это позволяет производить быстрое обновление ПО во всех устройствах сети без выключения и демонтажа контроллеров.Модуль может осуществлять обмен данными по шине со скоростью 375 Кбит/с, 187,5Кбит/с или 62,5Кбит/с.

Выбор скорости приема/передачи определяется перемычками на плате.

Кроме коммуникационных функций контроллер может исполнять пользовательские задачи (например, сбор данных). Пользовательские задачи загружаются одним исполнительным модулем с операционной системой OS51 и коммуникационным ПО в Flash-память адаптера.

Функциональность адаптера определяется встроенным ПО и прошивкой вентильной матрицы Altera, поэтому имеются широкие возможности модификации модуля для конкретной задачи, добавления/изменения функциональности, увеличения скорости передачи и так далее. Таким образом, можно использовать адаптер для управления устройствами сбора данных без использования дополнительных контроллеров и процессорных плат.

Таблица 4.3. Характеристики адаптерf шины BitBus

Входной

Интерфейс

ISA

Разъем

ISA (8-битный)

Адреса портов

200h,208h,2A0h,300h,308h,310h,318h,3A0h

Номера прерывания

IRQ3, IRQ4, IRQ5, IRQ7

Гальваническая развязка по питанию

Выходной последова-

тельный

Контроллер ввода-

вывода

SDLC (реализован прошивкой FPGA)

Приемопередатчик

RS-485 (ADM1485)

Разъем

DB-9

Тип кабеля

FTP ANSI/ETA/TIA 568A CAT5

Соответствие между скоростью передачи

данных и гарантированной

протяженностью канала

62,5 Кбит/с

1200 м

187,5 Кбит/с

300 м

375 Кбит/с

60 м

Способ кодирования

NRZI

Оптоэлектронная развязка по сигналам

Драйверы Программное обеспечение

Windows NT/98/2000

Windows монитор

OS/2

C/C++ библиотека

MS DOS

QNX

Физические характеристики

Напряжение питания и ток потребления

+5В±5%, 200мА

Индикация

Два светодиода (Красный/Зеленый)

Условия хранения

Температура

-50°С…+120°С

Условия эксплуата-

ции

Температура

0…+70°С

Влажность

0…90%

Размеры

Длина

100±0,1 мм

Ширина

127±0,1 мм

Высота

14,5±0,1 мм

Дополнительно

CPU

DS80C320 (Intel 80x51), 24МГц или выше

RAM

32Кбайт памяти данных

FLASH

32 Кбайт

Возможность обновления прошивок

FLASH может быть перепрограммирована

через регистры шины ISA (встроенное программное обеспечение)

Страницы: 1, 2, 3, 4, 5, 6


© 2010 РЕФЕРАТЫ