1.Классификация и основные характеристики биометрических средств идентификации личности
2. Особенности реализации статических методов биометрического контроля
2.1 Идентификация по рисунку папиллярных линий
2.2 Идентификация по радужной оболочке глаз
2.3 Идентификация по капиллярам сетчатки глаз
2.4 Идентификация по геометрии и тепловому изображению лица
2.5 Идентификация но геометрии кисти руки
3. Особенности реализации динамических методов биометрического контроля
3.1 Идентификация по почерку и динамике подписи
3.2 Идентификация но голосу и особенностям речи
3.3 Идентификация по ритму работы на клавиатуре
4. Биометрические технологии будущего
Заключение
Литература
Введение
Тема курсовой работы «Биометрические средства иденфикации личности».
Для идентификации личности современные электронные систем контроля и управления доступом (СКУД) используют устройства нескольких типов. Наиболее распространенными являются:
- кодонаборные устройства ПИН-кода (кнопочные клавиатуры);
В настоящее время самое широкое распространение получили всевозможные считыватели карт (проксимити, Виганда, с магнитной полосой и т. п). Они имеют свои неоспоримые преимущества и удобства в использовании, однако при этом в автоматизированном пункте доступа контролируется «проход карточки, а не человека». В то же время карточка может быть потеряна или украдена злоумышленниками. Все это снижает возможность использования СКУД, основанных исключительно на считывателях карт, в приложениях с высокими требованиями к уровню безопасности. Несравненно более высокий уровень безопасности обеспечивают всевозможные биометрические устройства контроля доступа, использующие в качестве идентифицирующего признака биометрические параметры человека (отпечаток пальца, геометрия руки, рисунок сетчатки глаза и т. п.), которые однозначно предоставляют доступ только определенному человеку - носителю кода (биометрических параметров). Но на сегодняшний день подобные устройства все еще остаются достаточно дорогими и сложными, и поэтому находят свое применение только в особо важных пунктах доступа. Считыватели штрих-кодов в настоящее время практически не устанавливаются, поскольку подделать пропуск чрезвычайно просто на принтере или на копировальном аппарате.
Цель работы рассмотреть принципы работы и использования биометрических средств иденфикации личности.
1. Классификация и основные характеристики биометрических средств идентификации личности
Достоинства биометрических идентификаторов на основе уникальных биологических, физиологических особенностей человека, однозначно удостоверяющих личность, привели к интенсивному развитию соответствующих средств. В биометрических идентификаторах используются статические методы, основанные на физиологических характеристиках человека, т. е. на уникальных характеристиках, данных ему от рождения (рисунки папиллярных линий пальцев, радужной оболочки глаз, капилляров сетчатки глаз, тепловое изображение лица, геометрия руки, ДНК), и динамические методы(почерк и динамика подписи, голос и особенности речи, ритм работы на клавиатуре). Предполагается использовать такие уникальные статические методы, как идентификация по подноггевому слою кожи, по объему указанных для сканирования пальцев, форме уха, запаху тела, и динамические методы -идентификация по движению губ при воспроизведении кодового слова, по динамике поворота ключа в дверном замке и т. д. Классификация современных биометрических средств идентификации показана на рис. 1.
Биометрические идентификаторы хорошо работают только тогда, когда оператор может проверить две вещи: во-первых, что биометрические данные получены от конкретного лица именно во время проверки, а во-вторых, что эти данные совпадают с образцом, хранящимся в картотеке. Биометрические характеристики являются уникальными идентификаторами, но вопрос их надежного хранения и защиты от перехвата по-прежнему остается открытым
Биометрические идентификаторы обеспечивают очень высокие показатели: вероятность несанкционированного доступа - 0,1 - 0,0001 %, вероятность ложного задержания - доли процентов, время идентификации - единицы секунд, но имеют более высокую стоимость по сравнению со средствами атрибутной идентификации. Качественные результаты сравнения различных биометрических технологий по точности идентификации и затратам указаны на рис. 2. Известны разработки СКУД, основанные на считывании и сравнении конфигураций сетки вен на запястье, образцов запаха, преобразованных в цифровой вид, анализе носящего уникальный характер акустического отклика среднего уха человека при облучении его специфическими акустическими импульсами и т. д.
Рис. 1. Классификация современных биометрических средств идентификации
Тенденция значительного улучшения характеристик биометрических идентификаторов и снижения их стоимости приведет к широкому применению биометрических идентификаторов в различных системах контроля и управления доступом. В настоящее время структура этого рынка представля-
тся следующим образом: верификация голоса - 11 %, распознавание лица -15 %, сканирование радужной оболочки глаза - 34 %, сканирование отпечатков пальцев - 34 %, геометрия руки - 25 %, верификация подписи - 3 %.
Любая биометрическая технология применяется поэтапно:
- сканирование объекта;
- извлечение индивидуальной информации;
- формирование шаблона;
- сравнение текущего шаблона с базой данных.
Методика биометрической аутентификации заключается в следующем. Пользователь, обращаясь с запросом к СКУД на доступ, прежде всего, идентифицирует себя с помощью идентификационной карточки, пластикового ключа или личного идентификационного номера. Система по предъявленному пользователем идентификатору находит в своей памяти личный файл (эталон) пользователя, в котором вместе с номером хранятся данные его биометрии, предварительно зафиксированные во время процедуры регистрации пользователя. После этого пользователь предъявляет системе для считывания обусловленный носитель биометрических параметров. Сопоставив полученные и зарегистрированные данные, система принимает решение о предоставлении или запрещении доступа.
Рис. 2. Сравнение методов биометрической идентификации
Таким образом, наряду с измерителями биометрических характеристик СКУД должны быть оборудованы соответствующими считывателями идентификационных карточек или пластиковых ключей (или цифровой клавиатурой).
Основные биометрические средства защиты информации, предоставляемые сегодня российским рынком обеспечения безопасности, приведены в табл. 1, технические характеристики некоторых биометрических систем представлены в табл. 2.
Таблица 1. Современные биометрические средства защиты информации
Наименование
Производитель
Биопризнак
Примечание
SACcat
SAC Technologies
Рисунок кожи пальца
Приставка к компьютеру
TouchLock, TouchSafe,
Identix
Рисунок кожи
СКУД объекта
TouchNet
пальца
Eye Dentification
Eyedentify
Рисунок сетчатки
СКУД объекта
System 7,5
глаза
(моноблок)
Ibex 10
Eyedentify
Рисунок сетчатки глаза
СКУД объекта (порт, камера)
eriprint 2000
Biometric Identification
Рисунок кожи пальца
СКУД универсал
ID3D-R Handkey
Recognition Systems
Рисунок ладони руки
СКУД универсал
HandKey
Escape
Рисунок ладони руки
СКУД универсал
ICAM 2001
Eyedentify
Рисунок сетчатки глаза
СКУД универсал
Secure Touch
Biometric Access Corp.
Рисунок кожи пальца
Приставка к компьютеру
BioMouse
American Biometric Corp
Рисунок кожи пальца
Приставка к компьютеру
Fingerprint Identification Unit
Sony
Рисунок кожи пальца
Приставка к компьютеру
Secure Keyboard Scanner
National Registry Inc.
Рисунок кожи пальца
Приставка к компьютеру
Рубеж
НПФ «Кристалл»
Динамика подписи, спектр голоса
Приставка к компьютеру
Дакточип Delsy
Элсис, НПП Электрон (Россия), Опак
(Белоруссия), Р&Р (Германия)
Рисунок кожи пальца
Приставка к компьютеру
BioLink U-Match Mouse, Мышь SFM-
2000A
BioLink Technologies
Рисунок кожи пальца
Стандартная мышь со встроенным сканером отпечатка пальца
Биометрическая система защиты компьютерной информации Дакто
ОАО «Черниговский завод радиоприборов»
Биологически активные точки и папиллярные линии кожи
Отдельный блок
Биометрическая система контроля Iris
Access 3000
LG Electronics, Inc
Рисунок радужной оболочки глаза
Интеграция со считывателем карт
Говоря о точности автоматической аутентификации, принято выделять два типа ошибок Ошибки 1-го рода («ложная тревога») связаны с запрещением доступа законному пользователю. Ошибки 1-го рода («пропуск цели»)- предоставление доступа незаконному пользователю. Причина возникновения ошибок состоит в том, что при измерениях биометрических характеристик существует определенный разброс значений. В биометрии совершенно невероятно, чтобы образцы и вновь полученные характеристики давали полное совпадение. Это справедливо для всех биометрических характеристик, включая отпечатки пальцев, сканирование сетчатки глаза или опознание подписи. Например, пальцы руки не всегда могут быть помещены в одно и то же положение, под тем же самым углом или с тем же самым давлением. И так каждый раз при проверке.
Таким образом, биометрический процесс (под ним здесь понимается автоматизация оценки биометрических характеристик) констатирует уровень надежности, который гарантирует система в выявлении истинности проверяемого лица. Процесс не заявляет, что предъявленные характеристики являются точной копией образцов, а говорит о том, что вероятность того, что пользователь именно то лицо, за которое себя выдает, составляет величину X %. Всегда ожидается (предполагается), что автоматический процесс должен обеспечить вероятность правильного распознавания равную пли очень близкую к 100 %. Таким образом, намек на то, что здесь могут быть элементы ошибки, заставляет некоторых думать, что биометрия не может играть существенной роли в организации входного контроля. Анализ показывает, что хотя ни одна система аутентификации не обеспечивает 100 %-ной надежности и что биометрический процесс не дает точного совпадения характеристик, все же он дает чрезвычайно высокий уровень точности. Некоторые зарубежные охранные структуры к разработчикам (производителям) СКУД применяют априори заданные требования, при выполнении которых последние могут рассчитывать на продажу своих систем.
Уровень надежности, дозволенный для системы контроля доступа, может быть совершенно различным, однако уровень ложных отказов истинным пользователям не вызывает какого-либо беспокойства, в то время как уровень фальшивых доступов фактически должен быть доведен до нуля
Таблица 2. Технические характеристики некоторых биометрических систем
Модель
Принцип действия
Вероятность
Вероятность
Время
ложного задержания,
ложного допуска, %
идентификации, с
Eye Dentify
Параметры глаза
0,001
0,4
1,5-4
Iriscan
Параметры зрачка
0,00078
0,00068
2
Identix
Отпечаток пальца
0,0001
1,0
0,5
Startek BioMet
Отпечаток пальца
0,0001
1,0
1
Partners Recognition
Геометрия руки
0,1
0,1
1
Systems
Геометрия руки
0,1
0,1
1
«Кордон»
Отпечаток пальца
0,0001
1,0
1
DS-100
Отпечаток пальца
0,001
-
1-3
TouchSafe Personal(8)
Отпечаток пальца
2
0,001
1
Eyedentify ICAM 2001
(Eyedentify)
Параметры сетчатки глаза
0,4
0,0001
1,5-4
Iriscan (Iriscan)
Параметры радужной оболочки глаза
0,00078
2
FingerScan (Identix)
Отпечаток пальца
1,0
0,0001
0,5
TouchSafe (Identix)
Отпечаток пальца
2,0
0,001
1
TouchNet (Identix)
Отпечаток пальца
1,0
0,001
3
Startek
Отпечаток пальца
1,0
0,0001
1
1D3D-R NDKEY
(Recognition Systems)
Геометрия руки
0,1
0,1
1
U.areU.
(Digital Persona)
Отпечаток пальца
3,0
0,01
1
Fill (Sony, I/O
Software)
Отпечаток пальца
0,1
1,0
0,3
BioMause (ABC)
Отпечаток пальца
-
0,2
1
Кордон (Россия)
Отпечаток пальца
1,0
0,0001
1
DS-100 (Россия)
Отпечаток пальца
-
0,001
1... 3
BioMet
Геометрия руки
0,1
0,1
1
Veriprint 2100
Отпечаток пальца
0,001
0,01
1
(Biometric ID)
Поскольку уровень надежности при сравнении может в конечном итоге регулироваться с тем, чтобы удовлетворить запросы конкретного потребителя, чрезвычайно важно этому пользователю реально представлять себе, чего данная система способна достигнуть. Наибольшую степень озабоченности вносит то, что фирмы-производители часто задают степени точности: скажем, 0,01% (т. е. 1 ошибка на 10 000 случаев аутентификации).
Можно получить статистические доказательства, позволяющие компьютеру сделать соответствующие расчеты, подтверждающие приведенные цифры, однако большинство пользователей не совсем доверяют этим результатам. Тем не менее реальная картина не столь мрачна, как кажется на первый взгляд. Большинство биометрических методов чрезвычайно точны. Так, результаты работы в г. Ньюхема в 1998 г. комплексной системы видеонаблюдения, дающей возможность идентификации преступников, впечатляют: уровень нападения на граждан снизился на 21%, нанесение ущерба имуществу граждан сократилось на 26 %, а уровень краж имел беспрецедентное снижение на целых 39 %.
Заметное оживление на рынке биометрических систем произошло после появления довольно мощных и в то же время недорогих 16-битовых микропроцессоров и создания эффективных алгоритмов обработки биометрической информации В настоящее время биометрические терминалы разрабатываются и предлагаются к продаже в основном фирмами США, небольшим количеством фирм в Англии, России, Украины, есть информация о работах в этом направлении в Японии и во Франции.
2. Особенности реализации статических методов биометрического контроля
2.1Идентификация по рисунку папиллярных линий
Применение данной технологии получило широкое распространение в системах автоматической идентификации по отпечатку пальца (AFIS).
Весь процесс идентификациизанимает не более нескольких секунд и не требует усилий от тех, кто использует данную систему доступа. В настоящее время уже производятся подобные системы размером меньше колоды карт. Определенным недостатком, сдерживающим развитие данного метода, является предубеждение части людей, которые не желают оставлять информацию о своих отпечатках пальцев. При этом контраргументом разработчиков аппаратуры является заверение в том, что информация о папиллярном узоре пальца не хранится - хранится лишь короткий идентификационный код, построенный на базе характерных особенностей отпечатка вашего пальца. По данному коду нельзя воссоздать узор и сравнить его с отпечатками пальцев, оставленными, допустим, на месте преступления. Преимущества доступа по отпечатку пальца - простота использования, удобство и надежность. Хотя процент ложных отказов при идентификации составляет около 3 %, ошибка ложного доступа - меньше 0,00001 % (1 на 1 000 000).
Существует два основных алгоритма сравненияполученного кода с имеющимся в базе шаблоном: по характерным точкам и по рельефу всей поверхности пальца. В первом случае выявляются характерные участки и запоминается их взаиморасположение. Во втором случае запоминается вся «картина» в целом. В современных системах используется также комбинация обоих алгоритмов, что позволяет повысить уровень надежности системы.
Традиционно американские компании занимают лидирующие позиции в разработке биометрических систем безопасности, в этом направлении успешно работают такие фирмы, как Identix, T-Netix, American Biometric Company, National Registry, sagem, Morpho, Verditicom, Infenion. Из российских компаний-разработчиков идентификационных устройств по папиллярным узорам пальцев заслуживает внимания компания «Биолинк».
С целью идентификации личности по рисунку папиллярных линий пальца проверяемый набирает на клавиатуре свой идентификационный номер и помещает указательный палец на окошко сканирующего устройства. При совпадении получаемых признаков с эталонными, предварительно заложенными в память ЭВМ и активизированными при наборе идентификационного номера, подается команда исполнительному устройству. Хотя рисунок папиллярных линий пальцев индивидуален, использование полного набора их признаков чрезмерно усложняет устройство идентификации. Поэтому с целью его удешевления применяют признаки, наиболее легко измеряемые автоматом. Выпускают сравнительно недорогие устройства идентификации по отпечаткам пальцев, действие которых основано на измерении расстояния между основными дактилоскопическими признаками. На величину вероятности ошибки опознания влияют также различные факторы, в том числе температура пальцев (рис. 3). Кроме того, процедура аутентификации у некоторых пользователей ассоциируется с процедурой снятия отпечатков у преступников, что вызывает у них психологический дискомфорт.
Дактилоскопия построена на двух основных качествах, присущих папиллярным узорам кожи пальцев и ладоней:
- стабильность рисунка узора на протяжении всей жизни человека;
- уникальность рисунка, что означает отсутствие двух индивидуумов с одинаковыми дактилоскопическими отпечатками.
Рис. 3. Процесс аутентификации по отпечаткам пальцев
Распознавание отпечатка пальца основано на анализе распределения особых точек (концевых точек и точек разветвления папиллярных линий), местоположение которых задается в декартовой системе координат.
Для снятия отпечатков в режиме реального времени применяются специальные контактные датчики различных типов. Системы идентификации по отпечаткам пальцев выпускаются в течение почти трех десятков лет Однако благодаря достигнутым успехам в области машинного распознавания отпечатков только в последние годы заметно увеличилось число фирм, выпускающих терминалы персональной аутентификации на базе дактилоскопии.
Американская фирма Fingermatrix предложила терминал Ridge Reader, который благодаря процедуре компенсации различных отклонений, возникающих при снятии отпечатка пальца в реальных условиях, а также применяемому способу «очищения» изображения и восстановления папилярного узора (который может быть «затуманен» из-за наличия на пальце грязи, масла или пота) допускает коэффициент ошибок 1-го рода не более 0,1 %, 2-го рода - не более 0,0001 %. Время обработки изображения составляет 5 с, регистрации пользователя составляет 2-3 мин. Для хранения одного цифрового образа отпечатка (эталона) расходуется 256 байт памяти.
Компания De La Rue Printrak Inc. производит систему PIV-100 на базе терминала аутентификации по отпечаткам пальцев. Кроме этих терминалов, в состав аппаратуры входят центральный процессор, контрольный пульт, дисплей, принтер, накопители на винчестерских дисках (для хранения базы данных), накопители на гибких дисках (для резервной памяти).
В этой системе требуемые коэффициенты ошибок могут выбираться в зависимости от необходимого уровня обеспечения безопасности путем под-стройки внутренних зависимых системных параметров, таких как пороговые значения принятия решения, сопоставляемые характеристики, стратегия распознавания. Но за возросшую точность приходится расплачиваться уменьшением быстродействия и снижением удобств для пользователей. Автоматическая обработка полученного дактилоскопического изображения начинается с преобразования первичного образа с разрешением 512 х 512 точек изображения и плотностью 8 бит на точку к конечному набору (множеству), состоящему примерно из 100 особых точек папиллярного узора, каждая из которых занимает 3 байт памяти. В результате объем памяти для хранения одного отпечатка по сравнению с первоначальным изображением уменьшается примерно в 1000 раз. Сопоставление двух дактилоскопических образов - оригинального и эталонного, хранящегося в памяти системы, - производится с помощью некоторой корреляционной процедуры. Время регистрации пользователя в базе данных - меньше 2 мин; вся процедура проверки пользователя занимает около 10 с, из которых 2 с уходит на аутентификацию, т. е. на вычисления по сопоставлению отпечатков.
Говоря о надежности аутентификационной процедуры по отпечаткам пальцев, необходимо рассмотреть также вопрос о возможности их копирования и использования другими лицами для получения несанкционированного доступа. В качестве одной из возможностей по обману терминала специалисты называют изготовление искусственной кисти с требуемыми отпечатками пальцев (или изъятия «подлинника» у законного владельца). Но существует и способ борьбы с такой фальсификацией. Для этого в состав терминального оборудования должны быть включены инфракрасный детектор, который позволит зафиксировать тепловое излучение от руки (или пальца), и (или) фотоплетизмограф, который определяет наличие изменений отражения света от поверхности потока крови.
Другим способом подделки является непосредственное нанесение папиллярного узора пальцев законного пользователя на руки злоумышленника с помощью специальных пленок или пленкообразующих составов. Такой способ довольно успешно может быть использован для получения доступа через КПП. Однако в этом случае необходимо получить качественные отпечатки пальцев законного пользователя, причем именно тех пальцев, которые были зарегистрированы системой, и именно в определенной последовательности (например, если система настроена на проверку не одного, а двух и более пальцев по очереди), но эта информация неизвестна законному пользователю и, следовательно, он не может войти в сговор с нарушителем.
По оценкам западных экспертов до 80% рынка биометрии сегодня занимают устройства идентификации по отпечаткам пальцев. Это объясняется следующим: во-первых, это один самых доступных и недорогих методов, во-вторых, методика идентификации по отпечаткам пальцев проста в использовании, удобна и лишена психологических барьеров, которые имеются, например, у систем, требующих воздействия на глаз световым пучком.
Известны три основных подходак реализации систем идентификации по отпечаткам пальцев. Самый распространенный на сегодня способ строится на использовании оптики - призмы и нескольких линз со встроенным источником света (рис. 4).
Рис. 4. Функциональная схема системы FIU фирмы SONY
Свет, падающий на призму, отражается от поверхности, соприкасаемой с пальцем пользователя, и выходит через другую сторону призмы, попадая на оптический сенсор (обычно, монохромная видеокамера на основе ПЗС-матрицы), где формируется изображение. Недостатки такой системы: отражение сильно зависит от параметров кожи - сухости, присутствия масла, бензина, других химических элементов. Например, у людей с сухой кожей наблюдается эффект размытия изображения и в результате - высокая доля ложных срабатываний.
Другой способ использует методику измерения электрического поля пальца с использованием полупроводниковой пластины. Когда пользователь устанавливает палец в сенсор, он выступает в качестве одной из пластин конденсатора (рис. 5). Другая пластина конденсатора - это поверхность сенсора, которая состоит из кремниевого чипа, содержащего 90 тыс. конденсаторных пластин с шагом считывания 500 точек на дюйм. В результате получается 8-битовое растровое изображение гребней и впадин пальца.
Естественно, в данном случае жировой баланс кожи и степень чистоты рук пользователя не играет никакой роли. Система идентификации в этом случае, получается гораздо более компактная. Недостатки метода - кремниевый чип требует эксплуатации в герметичной оболочке, а дополнительные покрытия уменьшают чувствительность системы. Кроме того, некоторое влияние на изображение может оказать сильное внешнее электромагнитное излучение.
Существует еще один метод реализации таких систем. Его разработала компания «Who Vision Systems». В основе их системы TactileSense - электрооптический полимер. Этот материал чувствителен к разности электрического поля между гребнями и впадинами кожи. Градиент электрического поля конвертируется в оптическое изображение высокого разрешения, которое затем переводится в цифровой формат, который уже можно передавать в ПК по параллельному порту или USB-интерфейсу. Метод также нечувствителен к состоянию кожу и степени ее загрязнения, в том числе и химического. Вместе с тем считывающее устройство имеет миниатюрные размеры и может быть встроено, например, в компьютерную клавиатуру. По утверждению производителей, система имеет колоссально низкую себестоимость (на уровне нескольких десятков долларов).
Характеристики некоторых методов приведены в табл. 3.
Таблица 3. Характеристики типовых систем идентификации по отпечаткам пальцев
Свойства
Оптическая система
Полупроводнико-вая технология
Электрооптический полимер
Небольшие размеры
Нет
Да
Да
Восприимчивость к сухой коже
Нет
Да
Да
Прочность поверхности
Средняя
Низкая
Высокая
Энергопотребление
Среднее
Низкое
Низкое
Цена
Средняя
Высокая
Низкая
Полученный одним из описанных методов аналоговый видеосигнал преобразуется в цифровую форму, после чего из него извлекается набор характеристик, уникальных для этого отпечатка пальца. Эти данные однозначно идентифицируют личность. Данные сохраняются и становятся уникальным шаблоном отпечатка пальца конкретного человека. При последующем считывании новые отпечатки пальцев сравниваются с хранимыми в базе.
В самом простом случае при обработке изображения на нем выделяются характерные точки (например, координаты конца или раздвоения папиллярных линий, места соединения витков). Можно выделить до 70 таких точек и каждую из них охарактеризовать двумя, тремя или даже большим числом параметров. В результате можно получить от отпечатка пальца до пятисот значений различных характеристик.
Более сложные алгоритмы обработки соединяют характерные точки изображения векторами и описывают их свойства и взаимоположение (рис. 6). Как правило, набор данных, получаемых с отпечатка, занимает до 1 Кбайт.
Рис. 6. Изображение отпечатка пальца (а) и его «образ» (б)
Алгоритм обработки позволяет хранить не само изображение, а его «образ» (набор характерных данных).
Из соображений безопасности ряд производителей (SONY, Digital Persona и др.) используют при передаче данных средства шифрования. Например, в системе U are U фирмы «Digital Persona» применяется 128-битовый ключ, и, кроме этого, все пересылаемые пакеты имеют временную отметку, что исключает возможность их повторной передачи.
Хранение данных и сравнение при идентификации происходит в компьютере. Практически каждый производитель аппаратной части вместе с системой поставляет и уникальное программное обеспечение, адаптированное чаще всего под Windows NT.
Так как большинство систем предназначено для контроля доступа к компьютерной информации и ориентировано в первую очередь на рядового пользователя, ПО отличается простотой и не требует специальной настройки.
Следует отметить одну особенность СКУД, в которой используются отпечатки пальцев: такие устройства более громоздки, чем другие типы считывателей. Это связано с тем, что, во-первых, нет необходимости экономить место на рабочем столе, а во-вторых, считыватели должны быть автономны. Поэтому, кроме сканера, в один корпус помещают устройство принятия решения и хранения информации, клавиатуру (для увеличения степени защищенности) и жидкокристаллический дисплей (для удобства настройки и эксплуатации). При необходимости к системе может быть подключен считыватель карт (смарт, магнитных и т. д.). Существуют и более экзотические модели. Например, фирма SONY поместила в корпус прибора динамик, а фирма «Mytec» считает, что будущее за интеграцией биометрии и таблеток iButton.
Кроме того, такие устройства должны обеспечивать простое подключение электрозамков и датчиков сигнализации и легко объединяться в сеть (наличие интерфейсов RS-485).
Втабл. 4 приведены сравнительные характеристики устройств, использующих методы идентификации по отпечаткам пальцев. Одно из них -устройство Veriprint 2100 фирмы «Biometric ID» - показано на рис. 7.
Таблица 4. Сравнительные характеристики устройств, использующих методы идентификации по отпечаткам пальцев