бесплатные рефераты

Автоматизация котельной установки

Для вычисления значений mб по графику определяются величины m и б и заносятся в таблицу.

По значениям m из графика потеря давления от установки диафрагмы и заносятся в таблицу. Из расчетной таблицы видно, что наиболее целесообразным является период давления на дифманометре ДРH=6300 кгс/м2, т.к. при этом располагаемый прямой участок трубопровода больше требуемого, потеря давления меньше допустимой и модуль близок к оптимальному.

Вычисляется диаметр отверстия диафрагмы:

Проводится проверка расчета по формуле:

Относительная погрешность при измерении расхода будет

Расчет выполнен верно, т.к. д=2,6% и это не превышает допустимые 5%.

Расчет регулирующего клапана

Исполнительный механизм должен отвечать требованиям, выявленным при анализе принятого закона регулирования или управления системы, а также требованиям, определяющим совместную работу с выбранным регулирующим органам, т.е. должен удовлетворять требованиям заданных динамических и статических характеристик исполнительного устройства. Выбор исполнительного механизма производится на стадии проектирования системы регулирования в соответствии с конкретными условиями его работы. При этом исполнительный механизм должен:

1) обеспечивать необходимую скорость регулирования, определяемую динамикой системы;

2) обеспечивать линейную ходовую характеристику (статическую), т.е. постоянство коэффициента передачи по мощности во всем диапазоне изменения регулируемой величины, при этом ИМ не будет искажать выбранного закона регулирования;

3) сохранять равенство между перемещением выходного элемента и рабочим ходом затвора регулирующего органа. Если это равенство не выполняется, необходимо подобрать механическую связь между исполнительным механизмом и регулирующим органом. При этом коэффициент передачи связи должен быть учтен (как и всякого звена, входящего в систему автоматического регулирования).

При выборе исполнительных механизмов, кроме требований, предъявляемых системой регулирования, необходимо учитывать следующее:

желательно, чтобы виды энергии, создающей перестановочное усилие, и энергии командного сигнала от регулирующего блока системы были идентичны; в противном случае следует предусмотреть наличие соответствующих преобразователей;

ИМ должны применяться с учетом окружающих условий и иметь соответствующее исполнение ( пыле-, брызго, - взрывозащищенное );

ИМ должны отвечать требованиям по энергетическим, эксплуатационным и экономическим показателям, а также требованиям надежности, предъявляемым в зависимости от степени ответственности регулируемой величины;

4) наименее важным фактором при выборе исполнительного механизма является его масса и габаритные размеры, однако в отдельных случаях эти показатели также следует учитывать, если этого требует специфика его применения.

Цель расчета: определение условной пропускаемой способности ; определение диаметра условного прохода Ду; выбор конкретного клапана.

Исходные данные:

вещество - вода

температура - 100С

внутренний диаметр трубы Дтр=50 мм

максимальный объемный расход Q0max=20м3/ч

минимальный объемный расход Q0min=10м3/ч

давление в начале участка трубы, на котором стоит регулирующий клапан PH=3,5кгс/см2

давление в конце участка трубы PК=2 кгс/см2

длина трубы L=20 м

Z=0, два вентиля, трубопровод прямой горизонтальный.

Расчет:

Находятся недостающие для расчета данные: плотность и динамическая вязкость: с=999,7 кг/м3; м=1,3077 сПз. Составляется схема трубопровода, на котором стоит регулирующий клапан

Рис.1 Отрезок трубопровода с регулирующим клапаном

Определяется число Рейнольдса (характеризует отношение сил инерции и сил вязкости) для максимального и минимального расходов

Определяется коэффициент трения для максимального и минимального расходов.

Определяются средние скорости потока для максимального и минимального расходов.

Определяются потери на трение при максимальном и минимальном расходах:

Определяются потери на местные сопротивления, для этого находятся коэффициенты сопротивления

овх - коэффициент сопротивления входа в трубу 0,5

овых - коэффициент сопротивления выхода 1

овент - коэффициент сопротивления вентиля 5

Определяются суммарные потери на трение и местные сопротивления

Определяется перепад давления на регулирующий орган при max и min расходах:

Определяется max и min пропускная способность регулирующего органа с учетом коэффициента запаса

Выбираются стандартные значения Ду и .

Ду=50 мм =63 м3/ч

Вычисляется число Remax для Ду.

.

По числу Remax находится поправка на вязкость Ш.

Ш=1.

Определяется пропускная способность с учетом влияния вязкости.

Определяется относительное положение затвора регулирующего органа при max и min расходах.

Клапан выбран верно, так как nmax<0,9; nmin>0,1.

Выбирается конкретный тип клапана, учитывая, что рабочее вещество (вода) - жидкость не агрессивная, t=100C, выбираем клапан типа 25ч32ННС.

Расчет устойчивости автоматического регулятора.

Для обеспечения нормального технологического режима производства пара высокого давления необходимо поддерживать постоянство температуры, при которой происходит нагрев воды. Это возможно осуществить изменением подачи пара, который предварительно проходит через барабан котла и затем поступает в змеевик топки.

В результате эксперимента получена кривая разгона барабана котла по каналу пар-температура.

Необходимо определить передаточную функцию объекта по каналу пар-температура, найти расширенную частотную характеристику и рассчитать оптимальную настройку ПИ-регулятора, построив переходный процесс в системе регулирования.

Рис. 2 Переходная характеристика регулирования расхода пара.

Ответ. В соответствие с методикой, изложенной выше, определяем передаточную функцию объекта. Предварительные расчеты дали следующие значения коэффициентов:

F,=10,36; a=E;

F,=34; a=F;

F,=5,l; a,=F.

Так как кривая разгона и её первая производная при t=0 равны нулю, то выбираем передаточную функцию с учётом транспортного запаздывания следующего вида:

Так как коэффициент усиления K объекта равен отношению выходной величины а и входной X в установившемся режиме, то

Транспортное запаздывание определяем из кривой разгона:

Пренебрегая коэффициентом F3=5,l ввиду его малого влияния, получаем передаточную функцию объекта более простого вида:

Построенная по этой передаточной функции кривая разгона хорошо совпадает с экспериментальной кривой разгона. По передаточной функции объекта заменой с на ico определяем его амплитудно-фазовую характеристику по формуле:

Результаты расчета приведены в таблице:

Амплитудно-фазовая характеристика объекта

Таблица 3

щ

А(щ)

ц(щ)

щ

А(щ)

ц (щ)

мин-1

°С/(m/ч)

град

мин-1

°С/(m/ч)

град

0,06

13,65

40°33'

0,36

2,91

163°15'

0,12

11,02

70°59'

0,48

1,61

185°06'

0,18

7,80

108°32'

0,60

1,14

202°36'

0,24

5,52

131°28'

0,72

0,81

217°36'

Исходя из этих данных мы видим, что регулятор устойчив.

98

10. Эксплуатация средств автоматизации

Эксплуатация камерной диафрагмы типа ДКС-10-150

Диафрагма устанавливается в трубопроводе, по которому протекает жидкое или газообразное вещество для сужения местного потока.

Качество изготовления сужающих устройств и особенно их правильный монтаж, имеют решающее значение для получения точных результатов измерения расхода.

Наружный диаметр зависит от присоединительных размеров трубопровода.

Сужающие устройства периодически прочищают, открывая вентиль. Продувку ведут до тех пор, пока не прекратиться выброс из сужающего устройства осадков, скопившихся в камерноотборных отверстиях.

На время продувки, дифманометр отключают, так как при сообщении с атмосферой одного вывода сужающего устройства, по второму выводу на дифманометр будет действовать статическое давление в трубопроводе во много раз превышающий предел давления.

Эксплуатация дифманометра типа ДМ

Перед установкой, дифманометр необходимо заполнить измеряемой жидкостью. Для этого на клапаны типового и импульсного сосудов, поочередно надевают резиновый шланг с сосудом, емкостью 0,005-0,001 м3, заполненный измеряемой жидкостью. Не реже одного раза в сутки проверяют нулевую точку, для поверки открывают уравнительный вентиль.

Если результат измерения вызывает сомнения, проводят контрольную поверку на рабочем месте.

Снимать показания измеряемого параметра жидкости на следующий день после включения дифманометра, периодически постукивая по соединительным импульсным линиям между диафрагмой и дифманометром для полного удаления пузырьков воздуха.

Если дифманометр предназначен для измерения параметров газа при отрицательных температурах окружающей среды (до -300С) рабочие камеры его необходимо тщательно продуть сухим сжатым воздухом.

Дифманометры должны содержаться в чистоте.

Эксплуатация блока питания БПС-90П

Текущее обслуживание блока заключается в ежедневной проверке правильности его работы по регистрирующему прибору РМТ.

Ежемесячно необходимо проверять надежность затяжки контактных винтов при отключенном от прибора напряжения питания.

Во время капитального ремонта технологической установки следует проводить лабораторную проверку выходных параметров блока с составлением протокола.

Эксплуатация преобразователя Метран-100

Все приборы для измерения давления и разряжения обеспечивают показания в течение длительного времени, если выполняются нормальные условия.

Преобразователь состоит из измерительного блока и электронного блока. Преобразователи различных параметров имеют унифицированное электронное устройство и отличаются лишь конструкцией измерительного блока. Перед включением преобразователей нужно убедиться в соответствии их установки и монтажа.

Подключение питания к плюю через 30 минут после включения электропитания проверьте и при необходимости установите в соответствие значения выходного сигнала преобразователя. Соответствующее нижнему значению измеряемого параметра. Установку производят с помощью элементов настройки "нуля" с точностью не хуже 0,2Дх, бех учета погрешности контролируемых средств. Контроль значения выходного сигнала может производиться так же с помощью милливольтметра постоянного тока, подключаемого к клеммам 3-4 электронного преобразователя. При выборе милливольтметра необходимо учитывать, что падение напряжения на нем не должно превышать 0,1В. Установка выходного сигнала у Метрана-100 должно производиться после подачи и сброса избыточного давления, составляющего 8-10% верхнего предела измерений.

Преобразователь Метран-100 выдерживает воздействие односторонней перегрузки рабочим избыточным давлением в равной мере, как со стороны плюсовой, так и минусовой камер. В отдельных случаях односторонняя перегрузка рабочим избыточным давлением нормальных характеристик преобразователя. Для подключения этого необходимо строго соблюдать определенную последовательность операций при включении преобразователя в работу, при продувке рабочих камер и сливе конденсата.

Эксплуатация ТСП-1088

Каждую смену проводят визуальный осмотр термопреобразователей сопротивлений типа ТСП-1088. При этом проверяют, чтобы крышки на головках были плотно закрыты и под крышками были прокладки. Асбестовый шнур для уплотнения выводов проводов должны быть плотно поджаты штуцером. В местах возможной тяги продукта следует предотвратить его попадание на защитную арматуру и головки термопреобразователя. Проверяют наличие и состояние съемочного слоя тепловой изоляции, уменьшающего отвод тепла от чувствительного элемента по защитному чехлу в окружающую среду. В зимнее время на наружных установках нельзя допускать образование ледяных налетов на защитной арматуре и отходящих проводах, так как они смогут привести к повреждению термопреобразователей сопротивлений. Не реже одного раза в месяц осматривают и чистят электрические контакты в головках термопреобразователей сопротивления.

Обслуживание прибора сводится к следующим периодическим операциям: замены диаграммного диска, протирание стекла и крышки прибора, заливки чернил, промывки чернильницы и пера, смазки подшипников и трущихся деталей механизма. Длительная с частым перемещением контакта по реохорду может привести к засорению контактной поверхности реохорда продуктами износа контактов, осадками, поэтому периодически необходимо чистить реохорд щеткой, смоченной в бензине или спирте.

Замена диаграммного диска производится следующим образом: снять указатель, взять за наружную обойму и, нажимая от себя до упора, повернуть указатель против часовой стрелки до выхода из зацепления. Затем снять диаграммный диск, предварительно вынув пружинную шайбу. Заправка чернильницы производится специальными чернилами. При длительной эксплуатации прибора следует периодически проводить чистку и смазку подвижных частей.

11. Экономический расчет

Расчет средств, требуемых для разработки проекта

При разработке научно-технического проекта одним из важных этапов является его технико-экономическое обоснование. Оно позволяет выделить преимущества и недостатки разработки, внедрения и эксплуатации данного программного продукта в разрезе экономической эффективности, социальной значимости и других аспектов.

Целью выполнения данного раздела является расчет затрат на разработку учебно - методического обеспечения дисциплины «Технические средства систем автоматизации».

Организация и планирование работ

Одной из основных целей планирования работ является определение общей продолжительности их проведения. Наиболее удобным, простым и наглядным способом для этих целей является использование линейного графика. Для его построения определим события и составим таблицу 6.

Перечень событий

Таблица 6

Событие

Код

Постановка задачи

0

Составление технического задания

1

Подбор и изучение литературы

2

Разработка проекта

3

Формирование информационной базы

4

Набор методического пособия

5

Проверка

6

Анализ результатов

7

Апробация инструментального средства

8

Оформление отчетной документации о проделанной работе

9

Составление пояснительной записки

10

Сдача готового проекта

11

Для организации процесса разработки инструментального средства использован метод сетевого планирования и управления. Метод позволяет графически представить план выполнения предстоящих работ, связанных с разработкой системы, его анализ и оптимизацию, что позволяет упрощать решения поставленных задач, координировать ресурсы времени, рабочие силы и последствия отдельных операций.

Составим перечень работ и соответствие работ своим исполнителям, продолжительность выполнения этих работ и сведем их в таблицу 7.

Трудозатраты на проведение НИР

Таблица 7

Этап

Исполнители

Продолжительность

работ, дни

Загрузка исполнителей, %

Длительность

работ, чел - дни

tmin

tmax

tож

ТРД

ТКД

1 Постановка задачи

Руководитель,

Студент

1

2

1,4

100

20

1,4

0,28

2

1

2 Составление технического задания

Руководитель,

Студент

3

4

3,4

20

100

0,68

3,4

1

5

3 Подбор и изучение литературы

Студент

10

15

12

100

12

17

4 Разработка проекта

Руководитель,

Студент

25

26

25,4

20

100

5,08

25,4

7

36

5 Формирование информационной базы

Руководитель,

Студент

28

30

28,8

10

100

2,88

28,8

4

42

6 Набор методического пособия

Студент

10

11

1,4

100

1,4

2

7 Проверка

Руководитель,

Студент

3

5

3,8

20

100

0,76

3,8

1

5

8Анализ результатов

Руководитель,

Студент

2

3

2,4

20

100

0,48

2,4

1

3

9 Апробация инструментального средства

Студент

5

7

5,8

100

5,8

9

10 Оформление отчетной документации о проделанной работе

Студент

7

10

8,2

100

8,2

12

11 Составление пояснительной записки

Студент

4

5

4,4

100

4,4

7

12 Сдача готового проекта

Студент

1

2

1,4

100

1,4

2

ИТОГО

11

97

16

141

Расчет трудоемкости этапов

Для организации научно-исследовательских работ (НИР) применяются различные методы экономического планирования. Работы, проводящиеся в коллективе с большими людскими затратами, рассчитываются методом сетевого планирования.

Настоящая работа имеет малый штат исполнителей (научный руководитель и инженер-программист) и проводится с малыми затратами, поэтому целесообразно применить систему линейного планирования с построением линейного графика.

Для расчета продолжительности выполнения работ будем использовать вероятный метод.

В настоящее время для определения ожидаемого значения продолжительности работ tож применяют вариант основанный на использовании двух оценок tmax и tmin.

где tmin - минимальная трудоемкость, чел/дн.;

tmax - максимальная трудоемкость, чел/дн..

Сроки tmin и tmax устанавливает руководитель.

Для выполнения перечисленных работ потребуются следующие специалисты -

а) инженер программист (ИП);

б) научный руководитель (НР).

На основе таблицы 7 построим диаграмму занятости рисунок 2 и линейный график выполнения работ исполнителями рисунок 2.

Рис. 2 - Процент занятости

Для построения линейного графика необходимо перевести длительность работ в календарные дни. Расчет ведется по формуле:

где ТК - коэффициент календарности.

(1)

где ТКАЛ - календарные дни, ТКД=365;

ТВД - выходные дни, ТВД=104;

ТПД - праздничные дни, ТПД=10.

В выполнении работы действуют научный руководитель и инженер.

Подставляя численные значения в формулу (1) находим .

Расчет нарастания технической готовности работ

Величина нарастания технической готовности работы показывает, на сколько процентов выполнена работа

где tн - нарастающая продолжительность выполнения работ с момента начала разработки темы, дни;

tо- общая продолжительность, которая вычисляется по формуле.

Для определения удельного веса каждого этапа воспользуемся формулой

где tОЖi - ожидаемая продолжительность i-го этапа, календарные дни;

tО - общая продолжительность, календарные дни.

Этапы

ТКД, дни

УВi, %

Гi, %

Март

Апрель

Май

Июнь

1 Постановка задачи

3

0,89

1,91

2 Составление технического задания

6

2,16

5,73

3 Подбор и изучение литературы

17

7,64

16,56

4 Разработка проекта

43

16,17

43,94

5 Формирование информационной базы

46

18,34

73,24

6 Набор методического пособия

2

0,89

74,52

7 Проверка

6

2,42

78,34

8Анализ результатов

4

1,52

80,86

9 Апробация инструментального средства

9

3,69

86,96

10 Оформление отчетной документации о проделанной работе

12

5,22

94,26

11 Составление пояснительной записки

7

2,80

98,72

12 Сдача готового проекта

2

0,89

100

Научный руководитель Студент

Рис. 3 - График занятости студента и преподвателя

Расчет затрат на разработку и внедрение

Планирование и учет себестоимости проекта осуществляется по калькуляционным статьям и экономическим элементам. Классификация по статьям калькуляции позволяет определить себестоимость отдельной работы.

Исходными данными для расчета затрат является план работ и перечень требуемой аппаратуры, оборудования и материалов.

Затраты на проект рассчитываются по следующим статьям расходов:

1. Заработная плата.

2. Начисления на зарплату (в пенсионный фонд, социальное страхование, медицинское страхование).

3. Расходы на материалы и комплектующие изделия.

4. Амортизационные расходы.

5. Затраты на электроэнергию.

6. Прочие расходы.

7. Общая себестоимость.

Расчет заработной платы

В этой статье расходов планируется и учитывается основная заработная плата инженерно-технических работников, непосредственно участвующих в разработке, доплаты по районным коэффициентам и премиям.

Сосн =,

где n - количество участников в i-ой работе;

Ti - затраты труда, необходимые для выполнения i-го вида работ, (дни);

Сзпi - среднедневная заработная плата работника, выполняющего i-ый вид работ, (руб/дней).

Среднедневная заработная плата определяется по формуле:

СЗПi=

где D - месячный должностной оклад работника, определяется как D=З*Ктар;

З - минимальная заработная плата;

Ктар - коэффициент по тарифной сетке;

Мр -- количество месяцев работы без отпуска в течение года (при отпуске 24 днях

Мр=11.2, при отпуске 56 дней Мр=10.4;

K - коэффициент, учитывающий коэффициент по премиям Кпр=40%, районный коэффициент Крк=30% (K = Кпр + Крк = 1 + 0,4 + 0,3= 1,7);

F0 - действительный годовой фонд рабочего времени работника, (дни).

Минимальная заработная плата на время разработки составила 1200 рублей.

Тогда среднемесячная заработная плата руководителя, имеющего по тарифной сетке тринадцатый разряд, составляет

D1= 1200 * 3,36 =4032,0 рублей

Среднемесячная заработная плата инженера одиннадцатого разряда, состовляет

D2= 1200 * 2,68=3216,0 рублей.

Результаты расчета действительного годового фонда занесены в таблицу 8.

Таблица 8 - Действительный годовой фонд рабочего времени работников

Показатели рабочего времени, дни

ИП

НР

Календарное число дней в году

365

365

Количество нерабочих дней

Выходные

Праздники

46

10

104

10

Планируемые потери отпуска

56

24

Действительный годовой фонд

247

229

С учетом того, что F01 = 247 и F02=229 дня, среднедневные зарплаты будут составлять-

а) научный руководитель - Сзп1= (4032,0* 1,7 * 11,2) / 229 = 335,24 рублей;

б) инженер-программист - Сзп2= (3216,0* 1,7 * 10,4) / 247 = 230,20 рублей.

Учитывая то, что научный руководитель был занят при разработке 11 дня, а инженер-программист 97 дней, найдем основную заработную плату и сведем в таблицу 9.

Таблица 9 - Основная заработная плата работников

Участники разработки

Сзпi , руб

ti , дни

Cоснз/п, руб

НР

411

11

3687,64

ИП

250,20

97

22329,4

Итого

27309,04

Соснз/п= 11 * 335,24 + 97 * 230,2 = 27309,04 руб.

Расчет отчислений от заработной платы

Здесь рассчитывается отчисления во вне бюджетные социальные фонды.

Отчисления от заработной платы определяются по следующей формуле:

Ссоцф =Ксоцф * Сосн

где Ксоцф- коэффициент, учитывающий размер отчислений из зар. платы.

Коэффициент включает в себя затраты по этой статье складывающиеся из отчислений на социальные нужды (26% от суммы общей зарплаты).

Сумма отчислений составит 6764,43 рублей.

Расчет затрат на материалы и комплектующие

Отражает стоимость материалов с учетом транспортно-заготовительных расходов (1% от стоимости материалов), используемых при разработке программного инструментального средства. Сведем затраты на материалы и комплектующие в таблицу 10

Таблица 10 - Расходные материалы

Наименование материалов

Цена ед., руб

Количество

Сумма, руб

Диск CD/RW

45,0

2 шт

90,0

Печатная бумага

175,0

2 пач

350,0

Картридж для принтера

450,0

1 шт

450,0

Канцелярские товары

200,0

200,0

Программный продукт

500

1 шт

500,0

Итого

1590,0

Согласно таблице 10 расход на материалы составляет:

Смат =90,0+350,0+450,0+200,0+500,0=1590,0 руб.

Расчет амортизационных расходов

В статье амортизационные отчисления от используемого оборудования рассчитывается амортизация за время выполнения работы для оборудования, которое имеется в наличии.

Амортизационные отчисления рассчитываются на время использования ПЭВМ по формуле:

СА = ,

где На - годовая норма амортизации, На = 25% = 0,25;

Цоб - цена оборудования, Цоб = 45000 руб.;

FД - действительный годовой фонд рабочего времени, FД=1976 часа;

tрм - время работы ВТ при создании программного продукта, tрм = 157 дня или 1256 часов;

Страницы: 1, 2, 3


© 2010 РЕФЕРАТЫ