Изготовление детали "Корпус"
Данная схема установки обеспечивает требуемую точность.
2.2 Приспособление для операции 120:
Установка детали производится на плоскость кондукторной плиты, и ориентируется на ней при помощи упоров и штифтов. Далее деталь прижимается к плите кондуктора при помощи откидных болтов и прижима. Так же закрепление детали осуществляется по средствам 2х винтов, расположенных по бокам кондукторной плиты.
Описание приспособления.
Данное приспособление относится:
1. По целевому назначению - к станочному;
2. По степени специализации - к специальному;
3. По количеству одновременно устанавливаемых заготовок - к одноместному.
Специальные приспособления применяются в производствах, где по условиям работы станки на значительное время закрепляют за определенной операцией.
Закрепление заготовки необходимо для надежного контакта заготовки с установочными элементами приспособления, для предотвращения смещения заготовки под действием внешних сил, для увеличения жесткости технологической системы и устранения вибраций.
Расчет приспособления
Силовой расчет
Во время обработки необходимо создать такую силу закрепления, чтобы предотвратить смещение детали в направлении подачи. Для этого необходимо рассчитать максимальную силу резания на данной операции. Такой силой будет сила резания при сверлении отверстия .
1) Крутящий момент:
2) Осевая сила:
Расчет силы закрепления, предотвращающей смещение
Q*f1+Q*f2=k*P0
где - коэффициент запаса;
- коэффициент трения в местах контакта зажимных элементов с поверхностью заготовки;
- коэффициент трения в местах контакта установочных элементов с базовой поверхностью заготовки.
.
где
- коэффициент, учитывающий неточности расчётов;
- коэффициент, учитывающий влияние случайных факторов на величину силы резания;
- коэффициент, учитывающий прогрессирующий износ инструмента;
- коэффициент, учитывающий нестабильность силы резания при прерывистой обработке;
- коэффициент, учитывающий непостоянство развиваемой силы закрепления;
- коэффициент, учитывающий удобство расположения рукояток в ручных зажимных устройствах;
- коэффициент, учитывающийся при наличии моментов стремящихся провернуть заготовку.
, где
- коэффициент, учитывающий неточность расчёта максимальной силы резания;
- коэффициент, учитывающий неточность расчёта силы закрепления;
- коэффициент, учитывающий внезапные факторы возникающие при обработке.
Прочностной расчёт
Наиболее нагруженным звеном является откидной болт. Опасное сечение находится в резьбовой части М6.
Условие прочности резьбы:
, где
- внутренний диаметр резьбы
Рдоп - предельно допустимая сила, действующая вдоль оси
- допускаемое напряжение при растяжении (сжатии)
Принимаем резьбу М6.
Точностной расчёт
Схема расчёта погрешности установки
Под погрешностью установки детали в приспособление понимается отклонение фактически достигнутого положения заготовки от требуемого, появляющееся в процессе базирования и закрепления.
- погрешность базирования появляется вследствие несовпадения технологической и измерительной базы.
- погрешность, вызванная силами закрепления
- погрешность приспособления
Погрешность базирования, является следствием не совпадения технологической и измерительной баз.
, т. к.технологическая и измерительная база совпадает.
, т. к.технологическая и измерительная база совпадает.
, т. к.технологическая и измерительная база совпадает.
, т. к.технологическая и измерительная база совпадает.
, т. к.технологическая и измерительная база совпадает.
, т. к.технологическая и измерительная база совпадает.
Погрешность закрепления - это разность между наибольшим и наименьшим смещением измерительной базы, возникающим под действием сил закрепления. , т. к. данная погрешность является систематически повторяющейся и её можно компенсировать.
Погрешность приспособления включает в себя следующие погрешность: погрешность изготовления и монтажа установочных элементов ; погрешность, вызванная прогрессирующим износом установочных элементов ; погрешность установки приспособления на станок .
.
Погрешность установки и монтажа характеризует неточность изготовления и сборки установочных элементов. Технологически возможно обеспечить эту погрешность в пределах:
- для приспособлений нормальной точности,
- для приспособлений повышенной точности.
Для дальнейшего расчета примем .
Величина износа зависит от количества установок заготовок в приспособлении, от материала и массы обрабатываемых заготовок, от состояния базовых поверхностей заготовок, от условий установки в приспособление, а так же от конструкции установочных элементов.
Величина износа определяется по следующей формуле:
, где
коэффициент, учитывающий вид опоры, условия работы опор по нагрузке, путь сдвига состояние базовых поверхностей заготовок;
;
число контактов заготовки с опорой, ;
.
.
выражает погрешность установки приспособления на станке, обусловленную смещением корпуса приспособления на столе станка.
Технологически возможно обеспечить .
Погрешность приспособления:
.
Погрешности установки заготовки в приспособление .
3. Научно-исследовательская часть
Обработка отверстий на станках с ЧПУ
Программирование сверлильных (расточных) операций, так же как и других, начинается с составления расчетно-технологической карты, определения координат опорных точек и т.д. Эскиз обрабатываемой детали представляют в двух системах координат: станка и детали. Для сравнительно простых операций на расчетно-технологических картах показывают исходное положение всех используемых инструментов (указывают также их вылет) из шпинделя.
На рис. 1 показана расчетно-технологическая карта для обработки в детали типа «крышка» двух отверстий диаметром 10Н8, трех резьбовых отверстий М6, и отверстия диаметром 22 мм. В табл. 1 приведены исходные координаты центров всех отверстий в системах координат детали и станка.
Таблица 1. Координаты опорных точек (центров отверстий) при обработке отверстий в детали типа «крышка»
Отверстие
|
Координата, мм
|
|
|
|
|
|
|
|
|
1
|
20
|
20
|
50
|
105
|
175
|
|
2
|
150
|
20
|
180
|
105
|
175
|
|
3
|
105
|
40
|
135
|
125
|
175
|
|
4
|
52,5
|
70,31
|
82,3
|
155,31
|
175
|
|
5
|
52,5
|
9,69
|
82,5
|
94,69
|
175
|
|
6
|
70
|
40
|
100
|
125
|
175
|
|
|
Рис. 1. Рассчетно-технологическая карта для обработки отверстий в детали «крышка»
Общая методика программирования сверлильных операций
До расчета траектории инструментов при сверлильной обработке сначала определяют предварительный состав переходов для каждого отверстия и выбирают инструмент, затем уточняют состав переходов и общую их последовательность. Далее строят схемы осевых перемещений инструментов относительно опорных точек (центров отверстий) и назначают режим резания.
Например, предварительный состав типовых переходов для обработки отверстий 1-6 в детали типа «крышки» может быть принят следующим: центрование (рис. 2, а, б), сверление (рис. 2, в, г, ж), нарезание резьбы (рис. 2, е) и развертывание (рис. 2, д). В связи с этим выбранный инструмент Т01 - T06 может быть размещен в гнездах шестипозиционной револьверной головки сверлильного станка.
1
125
Рис. 2. Типовые переходы работы инструмента для обработки отверстий детали «крышка»
Состав инструментальной наладки: (по гнездам): 1) сверло () диаметром 16 мм; 2) сверло диаметром 9,9 мм; 3) развертка диаметром 10Н8; 4) сверло диаметром 5 мм; 5) метчик М6; 6) сверло диаметром 22 мм. Общая последовательность переходов может быть следующей: центрование с зенкованием отверстий 1-5, сверление и развертывание отверстий 1 и 2, сверление отверстий 3-5 и нарезание в них резьбы, сверление отверстии 6. Схемы осевых перемещений для расчета опорных точек траектории инструментов при обработке отверстий 1-6 приведены на рис. 2.
На этих схемах цифрами 1-3 показаны последовательности опорных точек траектории инструментов, стрелками - направления рабочих () и холостых () ходов и направления вращения шпинделя. Знаком «х» обозначен выстой инструмента. Режимы резания для участков траектории приведены в табл. 2.
Таблица 2. Типовые переходы при обработке отверстий в детали типа «крышка»
Переход
|
Номер отверстия (см. рис. 1)
|
Инструмент
|
Схема на рис. 2
|
Участок траектории
|
sM, мм/мин
|
п, об/мин
|
|
Центрование с зенкованием
|
1; 2
|
Т01
|
а
|
1-2
|
40
|
500
|
|
|
3; 4; 5
|
|
б
|
|
|
|
|
Сверление
|
1; 2
|
Т02
|
в
|
1-2
|
100
|
710
|
|
|
|
|
|
2-3
|
80
|
|
|
|
3; 4; 5
|
Т04
|
г
|
1-2
|
100
|
1400
|
|
|
|
|
|
2-3
|
80
|
|
|
|
6
|
Т06
|
д
|
1-2
|
60
|
355
|
|
Развертывание
|
1; 2
|
ТОЗ
|
|
1-2
|
50
|
125
|
|
Нарезание резьбы
|
3; 4- 5
|
Т05
|
е
|
1-2
|
25
|
25
|
|
|
Кодирование информации
В общем случае кодирование информации УП для сверлильных станков сводится к кодированию процесса замены инструмента, кодированию перемещений (позиционирования) инструмента от одной опорной точки (центра отверстия) к другой и введению в действие циклов обработки отверстий в моменты, когда инструмент располагается над требуемой точкой.
Конкретная методика кодирования определяется моделью УЧПУ и ее возможностями. Рассмотрим общие положения.
Режимы движения и позиционирования задают с помощью подготовительных функций G60 - G69 (см. гл. 1). Согласно такой функции УЧПУ обеспечивает соответствующий характер подхода инструмента к заданной точке и остановку его в конкретной юно, которой и определяет точность позиционирования. В общем случае функции G60 - G64 задают позиционирование с ускоренного хода, а функции G65 - G69 - с рабочей подачи. Эти функции используют, если, например, на станках рассматриваемого типа выполняется операция прямоугольного формообразования, в частности фрезерование. Из рассмотренных функций наиболее часто применяют G60 (точное позиционирование со стороны движения) и G62 (позиционирование с ускоренного хода - грубое позиционирование).
Напомним, что при точном позиционировании обеспечивается ступенчатое снижение скорости движения: от ускоренной (или заданной) до минимальной скорости подхода к заданной точке. При грубом позиционировании происходит отключение подачи ускоренного ходи в зоне остановки, в результате чего возможен или перебег, или недобег.
Например, если необходимо последовательно позиционировать инструмент от точки к точке, то записывают:
N{i} G90 G60 Х(Х1) Y(Y1) LF
N {i+1} Х(Х2) Y(Y2) LF
N {i+2} Х(Х3) Y(Y3) LF
Реализация постоянных циклов обработки отверстий
Такие циклы реализуются заданием подготовительных функции G81_G89. Каждая из них, согласно ГОСТ 20999-83 (СТ СЭВ 3585-82), определяет конкретную операцию или переход (с перемещением по оси Z): сверление или центрование (G81), сверление или зенкерование с паузой в конце рабочего хода (G82), глубокое сверление (G83), G84 - нарезание резьбы и др. Как правило, в современных УЧПУ подпрограммы для реализации указанных функций постоянно находятся в памяти УЧПУ и достаточно указать в кадре УП требуемую функцию и числовое значение формальных параметров, необходимых для выполнении конкретной операции. Для большинства постоянных циклов этих параметров два: R и z. Параметр R в большинстве УЧПУ определяет координату, с которой начинается рабочая подача при исполнении заданного постоянного цикла. Эта величина сохраняется в памяти УЧПУ до считывания нового значения R. Параметр z в постоянном цикле определяет координату точки, в которую инструмент смещается на рабочей подаче.
При введении постоянных циклов существенное значение для параметров R и z имеет расположение нуля станка (начало координатной системы станка) относительно обрабатываемой детали в направлении оси Z.
В УЧПУ с фиксированным началом координат станка параметры R и z в постоянных циклах отсчитываются от нулевой плоскости в одном направлении (рис. 3, а). Поэтому кадр задания постоянного цикла, например сверления, имеет вид
N{i} G81 Z157.5 R177. LF
В кадре указываются координаты точки 1 (R) и конечной точки 2 (z).
Программирование постоянных циклов значительно удобнее для станков с УЧПУ, имеющих «плавающий нуль». В таких УЧПУ по командам УП или с пульта УЧПУ можно смещать, нуль станка в любую точку по всем осям, в частности по оси Z. В ряде УЧПУ по оси Z смещается нулевая плоскость XMY (рис. 3, б). Тогда в кадре, предшествующем кадру с указанием постоянного цикла, должна быть команда на смещение нуля по оси Z. После смещения нуля точка М начала координат станка будет располагаться в плоскости, параллельной плоскости детали (в точке М, рис. 3, б). Для рассмотренного случая величина R будет равна нулю, а значение z будет со знаком минус (в отсчете вниз от новой системы координат X'M'Z):
N{i} G59 Z177. LF
N {i+1} G81 Z_19.5 R0. LF
Определенные удобства создаются дли программирования, если УЧПУ имеют команды на сдвиг нуля, кодируемые функциями G92, G54_G59. В этом случае при программировании постоянных циклов нулевую плоскость совмещают с верхней плоскостью детали. (рис. 3, в).
Рис. 3. Схемы задания параметров R и z в постоянных циклах
Тогда при задании цикла указывают величину R, которая означает здесь недоход инструмента до обрабатываемой поверхности, и величину z - рабочий ход инструмента. При этом полный рабочий ход, так же как и обратный - холостой ход, будет равен сумме R+z. При таком задании цикла достаточно просто обрабатывать одинаковые отверстия, расположенные на ступенчатой поверхности. Например, кадры УП для обработки трех отверстий 1-3, расположенных рядом (рис. 3, г), имеют вид:
N{i} G59 Z115. LF
N {i+1} G81 R3. Z_19.5 LF
N {i+2} G60 Х54. LF
N {i+3} R3. X_22. LF
N {i+4} R14. LF
N {i+5} Х72. LF
Как видно из программы, действие команды G81 (постоянный цикл) распространяется на последующие кадры. Действующий постоянный цикл отменяется указанием функции G80. В рассматриваемом примере смещение нуля кодируется функцией G59. Эта команда сохраняется в УП до введения аналогичной команды с новым числовым значением или до команды G53 (отмена смещения, но только для кадра, где G53 записано). Смещение нуля лишь в одном кадре обычно записывается функцией G92. При использовании функции G59 возврат нуля в систему координат станка кодируется этой же функцией (G59) с нулевым числовым значением:
N{1} G59 Z0. LF
Кодирование процесса замены инструмента
Эта задача во многом зависит от конструктивных особенностей станка и УЧПУ. В большинстве случаев требуются как минимум, две команды, задаваемых в последовательных кадрах УП. В первой команде с адресом Т указывается требуемый инструмент, а по второй команде (М06) он устанавливается в шпинделе. По команде М06, кроме того, снимается отработавший инструмент и возвращается в магазин (при наличии магазина на станке).
Как правило, процесс замены инструмента у станков выполняется только в определенном (безопасном) положении шпинделя (шпиндельной бабки). В это положение шпиндель автоматически приходит по команде М06 или по специальной команде, которую надо указывать в кадрах УП, предшествующих команде М06.
Указание инструмента в кадрах УП обычно сопровождается указаниями по его коррекции. Как уже говорилось, совместно с кодом инструмента указывается номер его корректора. Так, для инструмента с кодом Т08 и корректором 06 общая запись команды на инструмент имеет вид Т0806.
Для задания осепараллельной коррекции длины инструмента, что характерно для станков сверлильной группы, используют подготовительные функции G43 и G44. Для коррекции вылета инструмента (рис. 4) в корректор заносится абсолютная разность между расчетной и действительной аппликатами вершины инструмента (z0 - z1)=?z или (z0 - z2)=?z и в УП записывается
N{1}… G44…Z{Z0}… Т0806…
если инструмент короче запрограммированного. Если же инструмент длиннее запрограммированного, то кадр будет таким:
N{i}… G43…Z{Z0}… Т0806…
При этом предполагается, что величина ?z установлена на корректоре указанного номера (в данном примере на корректоре 06).
В современных УЧПУ, однако, в большинстве случаен коррекция па длину инструмента задается с адресом Н. В этом случае функция G43 определяет, что числовое значение смещении, установленное на корректоре (со знаком + или -), прибавляется к заданной координате. Функция G44 означает, что величина смещения, установленная на корректоре с адресом Н, отнимается от заданного в данном кадре значения координатного размера.
Напомним, что в ряде случаев корректор инструмента может указываться отдельным адресом, например D.
Рис. 4. Схема для определения коррекции вылета инструмента
Подготовка УП по общей методике
Проследим общую методику кодирования информации УП для обработки детали, которая показана на рис. 1, а выбранные типовые переходы - на рис. 2.
Первыми переходами, согласно принятой схеме операции, являются переходы по центрованию всех отверстий, причем отверстия 1, 2 должны быть зацентрированы на глубину 6 мм, а отверстия 3-5 - на глубину 3,5 мм (см. рис. 2, а, б и табл. 2).
На примере программирования работы первого инструмента (сверло диаметром 16 мм, кодовый номер Т01, корректор 01) рассмотрим порядок кодирования информации для случаев без смещения нуля системы координат по оси Z:
% LF
N1 G60 G80 Т0101 LF
N2 F40. S500 М06 LF
N3 G44 Z390. LF
N4 Х50. Y105. LF
В первом кадре указаны работающий инструмент и подготовительные функции G60 (точное позиционирование) и G80 (отмена постоянных циклов) Последнее обязательно для того, чтобы очистить рабочую память УЧПУ от ранее запрограммированных команд по постоянным циклам Во втором кадре дана команда на смену инструмента (М06), указаны режимы его работы: подача 40 мм/мин и частота вращения шпинделя 500 об/мин. Третий кадр указывает на необходимость коррекции. При этом дается расчетный вылет инструмента (положение вершины) по оси Z и указывается функция коррекции G44 для укороченных инструментов. Четвертым кадром инструмент позиционируется в точку 1, определенную в системе координат станка координатами хс = 50 мм, ус= 105 мм (см. табл. 1). Следующим кадром необходимо вывести вершину инструмента в точку, которой соответствует недоход над плоскостью детали 2 мм. Чтобы вершина данного инструмента пришла в эту точку, необходимо сместить точку N шпинделя (см. рис. 1).
При работе в абсолютной системе координат программируется перемещение базовых точек узлов станка и перемещения этих точек выводятся на индикацию. В данном случае базовой для всех инструментов принята плоскость положения базовой точки N шпинделя, определенная координатой z= 560 мм. При положении торца шпинделя в этой плоскости происходит и смена инструментов. Для вывода сверла диаметром 16 мм (с расчетным вылетом 170 мм) в точку начала работы по циклу необходимо позиционировать шпиндель (его точку N) по оси Z в точку Ni с координатой R = 347 мм (560 - 213 = 347) - рис. 5. Координата положения торца шпинделя в конце рабочего хода сверла (точка N2) определится координатой z = 347 - 8 = 339 мм. Эти данные и следует записать с адресами R и z при программировании постоянного цикла:
N5 G82 R347. Z339. LF
После исполнения команды кадра N5 торец шпинделя будет расположен в плоскости, определенной координатой R=347 мм
Рис. 5. Схема для определения перемещений при центровании отверстий
Для обработки следующих отверстий по заданному циклу G82 достаточно теперь программировать только перемещения по осям X и Y. В кадрах, где изменяется координата z (центрование отверстий 3-5), следует ее указать. Естественно, что указанная в кадре N7 величина z отрабатывается в последующих кадрах тоже:
N6 Х180. Y105. LF
N7 Х135. Y125. Z341.5 LF
N8 Х82.3 Y155.31 LF
N9 Х82.5 Y94.69 LF
N10 Х100. Y125. L.F
N11 G80 Т0202 LF
Кадр N11 отменяет цикл G82 и задает новый инструмент.
Упрощенная методика программирования сверлильных операций
Рассмотренная методика программирования сравнительно сложна, требует пересчета некоторых размеров, а главное, определения и учета вылета инструмента в процессе программирования. Ее применяют, когда действительные вылеты инструментов мало отличаются от расчетных, когда применима система предварительной регулировки вылета инструмента в специальных приспособлениях. Программирование становится значительно проще, если использовать возможности УЧПУ по смещению нуля и вводить коррекцию на инструмент в период наладки (настройки) станка исходя из действительного его вылета. Это не только облегчает кодирование информации, но в значительной мере упрощает составление РТК (рис. 8.6): нет необходимости задаваться вылетом инструментов, не нужен пересчет координат точек из системы координат детали в систему координат станка и т.д.
Все это объясняется тем, что нуль станка смещается в начало координат до тали (из точки М в точку W) и отсчет программируемых перемещений и процессе отработки УП ведется от точки W, т.е. так, как это задано на чертеже детали. Кроме того, при настройке станка вылет каждого инструмента вводится (с обратным знаком) в корректор этого инструмента. Делается это просто. Инструмент доводят до касания вершины Р с верхней плоскостью заготовки, установленной в приспособлении. На табло, предназначенном для индикации перемещения по оси Z, высвечиваются цифры, определяющие расстояние от плоскости нового нуля до базовой точки шпинделя, т.е. величина zWN - l. А это и есть действительный вылет инструмента (например, для сверла диаметром 16 мм он равен 172 мм). Если теперь на корректоре инструмента набрать величину zWN - l (172 мм), то на табло индикации по оси Z будут нулевые показания, т.е. базовая точка N совместится с вершиной Р инструмента. Подобную настройку (с касанием инструмента острием или торцом поверхности детали) проводят для каждого инструмента, и значения соответствующих вылетов набирают на соответствующих корректорах. Таким образом, для всего набора инструментов на данную операцию справедливо положение: при нахождении вершины инструмента в плоскости нового нуля табло индикации по оси Z показывает нули.
При настройке достаточно просто также совмещать ось шпинделя с началом координат детали.
Подготовка УП по упрощенной методике
Приняв во внимание сказанное выше, программу обработки рассматриваемой детали можно представить следующим образом:
% LF
N1 G60 G80 Т0101 LF
N2 F40. S500 М06 LF
N3 G59 ХЗО. Y85. Z175. LF
В кадрах N1 - N3 задают инструмент Т01, условия его работы и указывают на смещение нуля (G59) по трем осям.
N4 Х20. Y20. LF
N6 G82 R2. Z_6.LF
В кадре N5 задают постоянный цикл и шипения параметров в соответствии со схемой на рис. 2, а
В кадре N7 дают команды на позиционирование в точку 3 и исполнение заданного цикла (G82) с новым значением z (-3,5 мм).
N8 Х52.5 Y70.31 LF
N9 Y9.69 LF
N10 Х70. Y40. LF
N11 G80 ТО202 LF
Кадр N11 завершает работу сверлом диаметром 16 мм (ТО 101) и готовит к вводу новый инструмент - сверло диаметром 9,9 мм (Т0202).
N12 F100. S710 М06 LF
N13 Х20. Y20. М08 LF
Кадры N12 и N13 задают режимы инструмента и установку его в шпиндель (команда М06). Выполнено позиционирование сверла в точку /, включено охлаждение (команда М08).
N14 G83 R2 Z_10. LF
N15 Z_17.5 F80. LF
Кадр N14 указывает постоянный цикл глубокого сверления (G83) и его параметры. Указывать параметр R необходимо, поскольку он определяет точку выхода (на ускоренном ходу) инструмента с позиции замены в рабочую позицию по оси Z. Кадр N15 дополняет кадр N14, указывая координату второго хода с измененной подачей (согласно принятой схеме обработки - рис. 2, в, подача на выходе сверла уменьшается до 80 мм/мин).
N16 X150. Y20. Z_10. F100. LF
N17 Z_17.5 F80. LF
Кадрами N16 и N17 программируется сверление по циклу G83 отверстия с центром в точке 2.
N18 G80 Т0404 LF
В кадре N18 готовится к вводу сверло диаметром 5 мм (Т0404) и задаются режимы его работы
N19 F100. S1400 М06 LF
N20 Х105. Y40. LF
N21 G83 R2. Z_9. LF
N22 Z_13.5 F80. LF
N23 Х52.5 Y70.31 Z_9. F100. LF
N24 Z_13.5 F80. LF
N25 G80 Т0606 LF
Кадры N19_N24 программируют обработку сверлом диаметром 5 мм по циклу G83 отверстий в ТкЗ, 4, 5. Кадр N25 указывает новый инструмент - сверло диаметром 22 мм (Т0606).
N26 F60. S355 М06 LF
N27 Х70. Y40. LF
N28 G81 R2. Z_22. LF N29 G80 Т0303 LF
Кадры N26 - N28 программируют сверление отверстия диаметром 22 мм с центром в точке 6. Указывается новый инструмент - развертка диаметром 10Н8 (Т0303).
N30 F50. S125 М06 LF
N31 Х20. Y20. LF
N32 UUU R2. Z_18. LF
Кадр N32 вводит цикл развертывания (G89) с рабочим ходом R + z, выдержкой в конце рабочего хода и отводом на быстром ходу (рис. 2, д)
N33 Х150. LF
N34 G80 Т0505 LF
Кадром N33 запрограммировано развертывание отверстия в точке 2. Кадр N34 готовит новый инструмент - метчик Мб (Т0505).
N35 F250. S250 М06 LF
N36 Х105. Y40. LF
N37 G84 R2. Z_17. LF
N38 Х52.5 Y70.31 LF
N39 Y9.69 LF
N40 G80 G59 ХО. Y0. Z0. М09 LF
N41 G00 ХО. YO. Z560. MOO LF
Кадры N35 - N39 программирует нарезание резьбы в отверстиях 3-5 в соответствии с постоянным циклом G84. Цикл обеспечивает рабочий ход с рабочей подачей, остановку и реверсивное вращение шпинделя в конечной точке, возврат инструмента с рабочей подачей.
Кадры N40, N41 отменяют смещение нуля, отключают охлаждение и выводят шпинделя в нулевую точку станка с координатой z = 560 мм.
Программирование расточных операций
Программирование обработки отверстий на расточных станках и кодирование информации УП практически аналогичны рассмотренным выше, хотя для расточных станков характерно значительно большее число возможных команд, расширение и усложнение постоянных циклов и др. Наличие у расточных станков дополнительных (вторичных) управляемых осей, необходимость закреплять (для повышения жесткости) гильзу шпинделя или столы (при некоторых видах обработки) несколько усложняют программирование. У ряда станков управляемым является также *поворот стола, смена приспособлений-спутников и др.
Страницы: 1, 2, 3, 4
|