Механизм имеет одну степень свободы, и значит, в нем должно быть одно начальное звено. За начальное звено принимаем кривошип 1, движение которого задано, на котором требуется определить уравновешивающую силу.
Тогда последовательность образования механизма по Ассуру будет следующей:Начальное звено 1, стойка 0.
Возможными поводками для присоединения групп Ассура к начальному звену и стойке являются звенья: 2, 3, 5. Из них звенья 2 и 3 образуют двухповодковую группу Ассура 3 вида (ВПВ). В этой группе внешние кинематические пары, которыми звенья группы присоединяются к начальному звену и стойке вращательные: (1 - 2) и (3 - 0), внутренняя кинематическая пара, которая соединяет между собой звенья 2 и 3 - поступательная (2 - 3). Присоединив 2ПГ Ассура 3 вида к начальному звену 1 и стойке 0, получим промежуточный механизм: 0, 1, 2, 3.
По отношению к промежуточному механизму поводками будут звенья 5 и 4 (образующие кинематические пары со звеньями промежуточного механизма). Звенья 4 и 5 образуют двухповодковую группу Ассура 5 вида (ВПП). В ней внешние кинематические пары: вращательная (3 - 4) и поступательная (5 - 0), внутренняя кинематическая пара - поступательная (4 - 0).
Таким образом, механизм долбежного станка образован последовательным присоединением к начальному звену 1 и стойке 0 двух двухповодковых групп Ассура - сначала 2ПГ 3 вида, а затем 2ПГ 5 вида.
3. Построение положений механизма
Для построения кинематической схемы исследуемого механизма в различных положениях выбираем масштабный коэффициент длины , который определяется как:
мl = l1 / AB = 0,14 / 28 = 0,005 м/мм
Каждое положение механизма обозначено соответствующим индексом:
I - соответствует левому крайнему положению ползуна 5,
II - соответствует правому крайнему положению ползуна 5,
III - соответствует рабочему ходу ползуна 5,
IV - соответствует холостому ходу ползуна 5.
Рабочему ходу ползуна соответствует угол поворота кривошипа цр.х. Холостому ходу - цх.х.
При выборе расчётного рабочего положения используем диаграмму сил F=F(SЕ), построенную на ходе ползуна 5. В металлорежущих станках процесс резания происходит только на части рабочего хода, соответствующей длине обрабатываемой детали lЕ. Поэтому выбираем положение кривошипа на угле поворота цр.х, соответствующем рабочему ходу, когда ползун 5 (точка Е) находится внутри отрезка lЕ.
При выборе положения механизма, соответствующего холостому ходу ползуна, берём любое положение кривошипа на угле его поворота цх.х.
5.3. План ускорений для левого крайнего положения.
__ ____ ___
аВ3 = аВ3Dt = аВАn
аВ3 = 5,52 м/с2
; (рс3) = = = 107,6 мм
аС3 = (рс3) · ма = 107,6 · 0,1 = 10,76 м/с2
аС3E = с3е · ма = 38,6 · 0,1 = 3,86 м/с2
аЕ = (ре) · ма = 100,4 · 0,1 = 10,04 м/с2
е2 = е3 = = = 15,3 c-2
5.4 План ускорений для правого крайнего положения
аВ3 = аВ3Dt = аВАn
аВ3 = 5,52 м/с2
; (рс3) = = = 107,6 мм
аС3 = (рс3) · ма = 107,6 · 0,1 = 10,76 м/с2
аС3E = с3е · ма = 38,6 · 0,1 = 3,86 м/с2
аЕ = (ре) · ма = 100,4 · 0,1 = 10,04 м/с2
е2 = е3 = = = 15,3 c-2
6. Кинетостатический расчет механизма
6.1 Определение сил инерции и сил тяжести звеньев
Силы тяжести , приложены в центрах масс S3, S5 звеньев и направлены вертикально вниз. Рассчитаем модули этих сил:
G3 = m3 · g = 22 · 9,8 = 216 H
G5 = m5 · g = 26 · 9,8 = 255 H
При определении сил инерции и моментов сил инерции воспользуемся построенным планом ускорений для нахождения ускорений центров масс звеньев.
; (рs3) = = = 11,5 мм
аS3 = (рs3) · ма = 11,5 · 0,1 = 1,15 м/с2
aS5 = aЕ = 1,72 м/с2
Теперь рассчитаем модули сил инерции.
Звено 3 совершает вращательное движение.
FИ3 = m3 · aS3 = 22 · 1,15 = 25,3 H
MИ3 = JS3 · е3 = 0,4 · 2,1 = 0,84 H · м
Звено 5 совершает поступательное движение.
FИ5 = m5 · aS5 = 26 · 1,72 = 44,72 Н
Сила инерции FИ3 приложена в центре масс S3 звена 3 и направлена противоположно ускорению аS3. Сила инерции FИ5 приложена в центре масс S5 звена 5 и направлена противоположно ускорению аS5. Момент сил инерции MИ3 по направлению противоположен угловому ускорению е3.
6.2 Определение реакций в кинематической паре 4-5
№
Что определяется
Каким уравнением
Для какого звена
1.
=0
4, 5
2.
(или )
=0
4
3.
5
4.
(или )
=0
4 (или 5)
___ __ __ __ __ __
1.
мF = F / f = 1250 / 125 = 10 Н / мм
F40 = f40 · мF = 129,5 · 10 = 1295 H
F50 = f50 · мF = 25,5 · 10 = 255 H
___ __ __ __
2.
__ ___ ___
F43 = -F40
F43 = 1295 H
3. , откуда =0.
__ __
4.F45 = F43
F45 = 1295 H
6.3 Определение реакций в кинематической паре 3-2
№
Что определяется
Каким уравнением
Для какого звена
1.
2,3
2.
=0
3
3.
=0
2
4.
2
1. ,
=
= = 477 Н
2. .
F32 = f32 · мF = 75,8 · 10 = 758 H
F23 = -F32; F23 = 758 H
F30n = f30n · мF = 39,8 · 10 = 398 H
F30 = f30 · мF = 61,9 · 10 = 619 H
___ __ __
3.
F21 = -F23 = 758 H
4. , откуда =0.
6.4 Определение уравновешивающей силы на кривошипе 1
№
Что определяется
Каким уравнением
Для какого звена
1.
Fур
1
2.
1
1. ,
= = 703,9 Н
2.
F10 = f10 · мF = 140,4 · 10 = 1404 H
7. Определение уравновешивающей силы с помощью рычага Жуковского
План скоростей для рассматриваемого рабочего положения механизма поворачиваем на 90 в сторону, противоположную вращению кривошипа.
Находим на плане скоростей точку s3, одноимённую точке S3 на механизме.
; (рs3) = = = 55,8 мм
Все силы, действующие на звенья механизма, включая силы инерции и искомую уравновешивающую силу, переносим параллельно самим себе в одноимённые точки повёрнутого плана. Если на звено действует момент сил, то этот момент следует предварительно представить на звене механизма как пару сил, вычислив их величины:
FM3 = = = 1,63 H
Составим уравнение моментов всех сил относительно полюса повёрнутого плана скоростей:
=
= = 698,5 Н
Полученную с помощью рычага Жуковского уравновешивающую силу сравниваем с силой, полученной в результате кинетостатического расчёта:
·100% = 0,7% < 5%
Список использованной литературы
Артоболевский И.И. Теория механизмов и машин. М., 1975г.
Петрова Т.М., Дмитриева Л.Н. Методические указания по теории механизмов и машин «Кинематический и силовой расчет механизма», М., МАМИ, 1990г.