бесплатные рефераты

Контроль за наведенным напряжением

Контроль за наведенным напряжением

1

РЕФЕРАТ

на тему:

«КОНТРОЛЬ ЗА НАВЕДЕННЫМ НАПРЯЖЕНИЕМ»

Содержание

1.ОБЕСПЕЧЕНИЕ ЭЛЕКТРОБЕЗОПАСНОСТИ В УСЛОВИЯХ НАЛИЧИЯ НАВЕДЕННОГО НАПРЯЖЕНИЯ ПРИБОРЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ОСУЩЕСТВЛЕНИЯ КОНТРОЛЯ НАД НАПРЯЖЕНИЕМ

2. ПРИБОРЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ОСУЩЕСТВЛЕНИЯ КОНТРОЛЯ НАД НАПРЯЖЕНИЕМ

2.1.УКАЗАТЕЛИ НАПРЯЖЕНИЯ ДО 1000 В

2.2.УКАЗАТЕЛИ НАПРЯЖЕНИЯ ДЛЯ ЭЛЕКТРОУСТАНОВОК НАПРЯЖЕНИЕМ ВЫШЕ 1000 В

2.3.БЕСКОНТАКТНЫЕ УКАЗАТЕЛИ НАПРЯЖЕНИЯ ВЫШЕ 1000 В

2.4.ОСОБЕННОСТИ ПРИМЕНЕНИЯ УСТРОЙСТВ ДЛЯ ПРОВЕРКИ УКАЗАТЕЛЕЙ НАПРЯЖЕНИЯ ВЫШЕ 1000 В В ПОЛЕВЫХ УСЛОВИЯХ

3.СИГНАЛИЗАТОРЫ НАПРЯЖЕНИЯ ДЛЯ ВОЗДУШНЫХ ЛЭП

3.1.СИСТЕМЫ СИГНАЛИЗАЦИИ ДЛЯ УСТРОЙСТВ КОНТРОЛЯ НАЛИЧИЯ НАПРЯЖЕНИЯ

3.2.СИГНАЛИЗАТОРЫ НАПРЯЖЕНИЯ КАСОЧНЫЕ (СНК)

3.3.СИГНАЛИЗАТОРЫ - УКАЗАТЕЛИ НАПРЯЖЕНИЯ БЕСКОНТАКТНЫЕ

СПИСОК ЛИТЕРАТУРЫ

ОБЕСПЕЧЕНИЕ ЭЛЕКТРОБЕЗОПАСНОСТИ В УСЛОВИЯХ НАЛИЧИЯ НАВЕДЕННОГО НАПРЯЖЕНИЯ

На проводах и тросах выведенной в ремонт воздушной линии электропередачи (ВЛ), находящейся в зоне влияния другой или других ВЛ высокого напряжения, наводится напряжение относительно земли. Это напряжение может представлять существенную опасность для ремонтного персонала.

В соответствии с Правилами техники безопасности при обслуживании электроустановок (ПТБ) перед началом работ на ВЛ, находящейся под наведенным напряжением, требуется путем соответствующих измерений произвести классификацию ВЛ по степени опасности наведенного напряжения. С этой целью на отключенной и заземленной с обоих концов ВЛ (в распределительных устройствах (РУ) подстанций и станций) выполняют измерения уровня наведенного напряжения с последующим пересчетом к режиму передачи по влияющим ВЛ наибольшей мощности.

Если наибольшая величина наведенного напряжения по всей длине ВЛ не превышает 42 B, то линия относится к категории безопасного действия наведенного напряжения, и работы на ней можно проводить с использованием обычных средств защиты.

Линии, на которых наибольший уровень наведенного напряжения превышает 42 В, относят к категории линий с сильным или опасным действием наведенного напряжения. В соответствии с ПТБ на таких линиях работы должны производиться с использованием специальных защитных технических мероприятий (размещение заземлений по линии, разземление концов линии, разрезание проводов линии и др.).

Разработка мероприятий по защите от наведенного напряжения должна основываться на оценке условий электробезопасности на ВЛ, находящейся под наведенным напряжением при определенной схеме заземления ВЛ, линейного оборудования, рабочих участков и рабочих мест.

Оценку условий электробезопасности при работах на ВЛ под наведенным напряжением выполняют на основании результатов расчета и измерений уровня наведенного напряжения при максимальной рабочей нагрузке влияющих ВЛ.

Выполнение требований ПТБ предполагает наличие методики, позволяющей на основании однозначно определяемых признаков сконцент-рировать внимание персонала на наиболее неблагополучных в этом смысле ВЛ или их участках. В рекомендациях же ПТБ по замерам наведенных напряжений отсутствуют какие-либо ориентиры на выбор точек измерения и характер проводимых замеров. В то не время та-кие измерения весьма трудоемки, так как требуют проведения замеров с учетом изменяющихся режимов ВЛ и меняющихся в течение года погодных условий, рекомендаций по выбору характерных точек измерения, что в большинстве случаев вряд ли удается измерить максимально возможные значения наведенных напряжений.

Указанные трудности во многом могут быть преодолены при ис-пользовании предварительного расчетного анализа наведенных напряжений на отключенных ВЛ, которые в соответствии с рекомендациями ПТБ должны рассматриваться как потенциально опасные. В этом случае работы по проведению измерений могут быть значительно со-кращены, так как из перечня всех потенциально опасных линий можно будет исключить те (как показано ниже - большинство), для ко-торых граница 42 В, в принципе, не достижима. Измерения не могут проводиться как контрольные мероприятия только для тех линий, на которых все же возможно появление напряжений свыше 42 В.

Анализ закономерностей распределения наведенных напряжений на ВЛ, выведенной в ремонт и заземленной по концам, показывает, что причиной появления на ней наведенных напряжений, превышающих допустимые 42 В, может быть неоднородность (неравенство) удельных ЭДС. наводимых на разных ее участках взаимодействия с влияющими. Действительно, если удельные ЭДС однородны, то измене-ние напряжения по длине такой ВЛ имеет линейный характер:

(1)

где  и - соответственно напряжения на заземлителях в начале и в конце ВЛ; - ее длина.

Из (1) видно, что наибольшие наведенные напряжения на такой ВЛ возникают по ее концам. Однако, для существующих типов двухцепных опор ВЛ 35-220 кВ, для которых удельные наводимые ЭДС на фа-зах лежат в пределах от 0,033 до 0,062 В/(А·км), при существующих эксплуатационных длинах ВЛ и токах по влияющим ВЛ вплоть до технически возможных эти напряжения не могут превысить 42 В.

Для ВЛ, имеющих, например, два участка с различными по величине удельными наводимыми ЭДС Е1 и Е2 , закономерность изменения наведенного напряжения на границе изменения этих ЭДС имеет квадратичную зависимость:

(2)

Исследование (2) показывает, что максимальное значение  изменяется в этом случае по перевернутой параболе, ветви которой (при ) пересекаются с осью абсцисс в начале координат и в точке . Из этого следует, что в этом случае наибольшее наведенное напряжение возникает в точке изменения удельных ЭДС, а максимального значения это напряжение может достигать в случае, если координата  совпадает с серединой ВЛ ():

Так, например, если ВЛ 110 кВ на половине своей длины подвешена на одних опорах с влияющей, а затем их электромагнитное взаимодейст-вие прекращается, то при наводящем токе в 100 А при E1 = 0,062 В/ (А·км) и E2 = 0 максимум наведенного напряжения превысит 42 В уже при длине выведенной в ремонт линии 28 км.

Анализ трасс электромагнитно взаимодействующих линий АО "Кировэнерго" показал, что причинами неоднородности наводимых ЭДС на разных участках выведенных в ремонт ВЛ могут быть: изменение числа наводящих источников вдоль их длины; переход ВЛ с одноцепных опор на двухцепные и наоборот; транспозиции проводов фаз как на отключенной, так и на соседних ВЛ; заходы как отключенной, так и наводящих ВЛ на подстанцию, при которых изменяется не только амплитуда наводящего тока, но и положение фаз на опорах по даль-нейшему ходу следования ВЛ. Так, из двадцати исследованных ВЛ, на которых напряжение превышает 42 В. пять имели транспозицию фаз, в двух случаях изменялось положение фаз на наводящей линии, трассы восьми линий имели два характерных участка: на протяжении одного из них линия подвешена на одних опорах с находящейся в работе ВЛ, на другом - источник электромагнитного воздействия отсутствует. Наиболее опасные условия работы создаются на ВЛ, трассы которых проложены вблизи ВЛ-500 кВ "КАЭС-Вятка" и "Воткинская ГЭС-Вятка", так как по этим ВЛ возможны токи до 1100 А.

Выполненные расчеты электромагнитных наведенных напряжений на ВЛ АО "Кировэнерго", выведенных в ремонт и заземленных по концам, показали, что лишь для 16 % из них возможно превышение допустимых по ПТБ значений напряжения, в остальных случаях даже при максималь-ных нагрузках на соседних линиях Umaх оказываются меньше 42 В (таблица 1).

Таблица 1

Номинальное напряжение ВЛ Uном , кВ

220

110

35

Количество исследованных линий

15

91

21

Число линий, на которых наведенные напряжения Uмах могут быть больше на 42 В

6

13

1

В таблице 2 приведены значения наведенных напряжений на подвергшихся анализу ВЛ в зависимости от их длин. Как видно из этой таблицы, для ВЛ длиной до 10 км превышение наведенных напряжений 42 В маловероятно. В то жe время вероятность того, что на протяженных ВЛ возникнут напряжения более 42 В велика. Это связано с тем, что та-кие ВЛ, как правило, вдоль своей трассы имеют несколько наводящих источников (например, ВЛ 220 кВ "Вятка-Мураши"- 7 ВЛ), что вызывает значительную неоднородность действующих по длине таких ВЛ наведен-ных ЭДС.

Таблица 2

Протяженность ЛЭП, км

< 10

10-20

20-30

30-40

40-50

50-60

60-

70

70-80

80-90

> 90

Число исследованных ЛЭП, n

25

18

22

6

5

3

2

6

2

2

Число ВЛ, для которых

Un > 42 В, n1

0

1

3

1

0

1

1

1

2

n1 / n , %

0

5,55

13,64

50

20

0

50

16,6

50

100

Следует также отметить, что расчетные кривые распределения на-веденных напряжений по длине ВЛ, выведенных в ремонт и заземленных по концам, имеют ярко выраженный характер ломаной линии с изломами в точках изменения характера взаимодействия с влияющими.

Из таблиц 1 и 2 можно сделать следующие выводы:

Для составления картины возможных наведенных напряжений на
ВЛ целесообразно применять разработанные расчетные методики для их
определения. При этом может быть выделена небольшая часть ВЛ, наведенные напряжения на которых действительно достигают опасных вели-чин.

Проведение измерений наведенных напряжений необходимо про-изводить на границах разделов участков электромагнитного взаимодействия ВЛ, выведенных в ремонт и влияющих.

Также для того, чтобы определить расчет наведенных напряжений (НН) на выведенных в ремонт высоковольтных воздушных линиях (ВЛ) электропередачи можно произвести расчет электромагнитной составляющей (ЭМС) НН и сделать оценку зависимости уровня электромагнитной составляющей НН от несимметрии тока влияющей ВЛ электропередачи. В большинстве случаев расчет проводится, исходя из предпо-ложения, что во влияющей ВЛ протекает симметричный ток нагрузки, то есть учитывается только составляющая прямой последовательности тока.

Составляющие обратной и нулевой последовательности во влияющем токе считаются равными нулю. В реальной энергосистеме неизбежна несим-метрия тока в линиях электропередачи, обусловленная как несимметричной нагрузкой, так и пофазным различием параметров самих ВЛ. Представляется целесообразным оценить влияние несимметрии влияющих токов на уровень ЭМС НН. Такая оценка была выполнена на простейшей расчетной модели выведенной в ремонт ВЛ 330 кВ. Исходные данные для расчета: отключенная ВЛ имеет общую протяженность 100 км; от головной подстанции до отметки 50 км она подвешена на двухцепных опорах П330-2 совместно с линией, находящейся под нагрузкой, далее ли-нии расходятся и влияния между ними нет; каждая фаза линии выполнена двумя проводами АС 400/51; во влияющей линии протекает ток нагрузки, составляющая прямой последовательности которого равна 100А; отключенная ВЛ заземлена по концам на подстанциях тремя фазами через сопро-тивление 0,5 Ом; на отметке 50 км в месте расхождения линий накладыва-ется переносное заземление (рассмотрены случаи однофазного и трехфазного переносного заземления); сопротивление переносного заземления принято 10 Ом.

Варьируя составляющие обратной и нулевой последовательности влияющего тока в пределах от 0 до 10% от тока прямой последовательно-сти, были получены зависимости уровня ЭМС НН в месте наложения пе-реносного заземления от несимметрии влияющего тока.

Для расчета НН можно составить три схемы замещения отключенной ВЛ; прямой, обратной и нулевой последовательностей. Однофазное или трехфазное заземление в середине линии - случай од-нофазного или трехфазного короткого замыкания через переходное сопро-тивление, равное сопротивлению переносного заземления. Отличие от рас-чета токов короткого замыкания состоит в наличии источников наведен-ных ЭДС не только в схеме прямой, но и в схемах обратной и нулевой по-следовательностей. Величина ЭДС источников рассчитывалась отдельно от составляющих различных последовательностей влияющего тока через взаимные сопротивления между схемами замещения отключенной и влияющей ВЛ по составляющим прямой, обратной и нулевой последовательностей.

По результатам расчетов ЭМС НН при различном содержании составляющих обратной и нулевой последо-вательностей во влияющем токе по-строены зависимости, приведенные на ри-сунке 1.

Рисунок 1. Зависимость ЭМС НН в месте выполнения работы от содержания составляющей нулевой последовательности во влияющем токе при различных фазовых сдвигах тока I0 относительно тока I1.

Влияние от токов обратной I2 и нулевой I0 последо-вательности оценива-лось независимо. Анализ показывает, что составляющая тока обратной последовательности не вызыва-ет заметного изменения общего уровня ЭМС НН. Поэтому приведены за-висимости только для составляющей тока нулевой последовательности. Кроме того, были рассмотрены режимы при различных фазовых сдвигах тока нулевой последовательности относительно тока прямой последовательности (рассмотрены случаи сдвига на 0°, 90°, 180°, 270°).

Можно отметить, что появление во влияющем токе составляющей нулевой последовательности оказывает значительное влияние на результа-ты расчета ЭМС НН на отключенной и заземленной ВЛ. Причем в зависи-мости от фазового сдвига и величины тока нулевой последовательности это влияние может привести как к уменьшению, так и к увеличению полученного расчетного значения ЭМС НН. Поэтому представляется целесооб-разным производить расчеты наведенных напряжений на выведенных в ремонт ВЛ только с учетом несимметрии влияющего тока, возникающей из-за несимметричной нагрузки и пофазного различия параметров ВЛ. Учет такого влияния возможен при использовании компьютерных про-грамм, осуществляющих расчеты установившихся нагрузочных режимов по трехфазным моделям электроэнергетических систем с применением фазных координат.

Режим заземления ВЛ, при котором возможно производство работ под наведенным напряжением, определяется схемой заземления ВЛ.

Для обеспечения безопасности при проведении работ на ВЛ под наведенным напряжением применяются четыре схемы заземления ВЛ. Реализация этих схем на практике осуществляется с помощью подстанционного, базового и специального заземлений. Подстанционное заземление служит для заземления концов ВЛ и устанавливается присоединением фаз ВЛ к заземляющему устройству станции (подстанции) путем включения заземляющих ножей линейного разъединителя в сторону ВЛ.

Базовое заземление применяется при разземлении обоих концов ВЛ и устанавливается присоединением проводов всех фаз ВЛ к заземляющему устройству опоры с помощью двух параллельных переносных заземлений для каждой фазы.

Специальное заземление служит для снижения уровня наведенного напряжения на ВЛ или на ее отдельных участках до безопасной величины и устанавливается путем присоединения всех фаз ВЛ к специально устраиваемому заземлителю с помощью переносного заземления.

При работах на ВЛ под наведенным напряжением, кроме выбора режима заземления, необходимо соответствующим образом заземлять рабочие места и линейное оборудование на подстанциях или электрических станциях.

Заземление линейного оборудования осуществляется с помощью дополнительного заземления, которое служит добавочным защитным мероприятием при работах на линейном оборудовании станций (подстанций) и устанавливается присоединением проводов фаз в РУ к заземляющим проводникам или к заземленным металлическим элементам оборудования с помощью переносного заземления.

Заземление рабочего места осуществляется с помощью линейного заземления, которое устанавливается присоединением проводов фазы (фаз), троса, на которых производятся работы, к заземляющему устройству опоры с помощью переносного заземления.

Чтобы безопасно и эффективно осуществлять мероприятия по защите персонала оперативно-выездных бригад от наведенного напряжения, необходимы методы и технические средства, позволяющие отличать наведенное напряжение от рабочего.

При проведении работ на воздушных линиях электропередачи (ВЛ) наличие наведенного напряжения от соседних ВЛ и других электроустановок существенно затрудняет определение отсутствия рабочего напряжения и, тем самым, снижает безопасность подготовки рабочего места (установки переносного заземления).

В настоящее время в практическом применении работников энергосистем отсутствуют технологии, позволяющие различать наведенное и рабочее напряжения. Каждое предприятие электросетей расчетным способом определяет уровни возможного наведенного напряжения, его мощность и необходимые специальные меры для обеспечения безопасности. Однако в нормативных документах (Правилах, инструкциях и т. п.) отсутствуют указания, определяющие порядок действий оперативно-выездных бригад (ОВБ) по обеспечению безопасности с использованием обычных средств защиты и приспособлений в условиях наличия наведенного напряжения.

Общепринятый порядок действий для принятия решения о возможности безопасной установки переносного заземления при подготовке рабочего места на ВЛ основан на определении наличия/отсутствия напряжения на проводах линии с помощью однополюсного указателя высокого напряжения. При этом напряжение индикации указателя должно составлять не более 25% номинального напряжения электроустановки.

Обязательное выполнение этого алгоритма обеспечивает безопасность подготовки рабочего места за счет исключения возможности установки переносного заземления при наличии какого-либо напряжения. Однако в ряде случаев обнаруженное напряжение является наведенным от соседних ВЛ или других электроустановок и не представляет опасности при установке переносного заземления. В этих случаях прекращение работ на ВЛ из-за определения наличия напряжения не обосновано и экономически не выгодно.

Величина напряжения, наведенного на проводах отключенной линии электропередачи от близко расположенной линии более высокого напряжения, может достигать значений, превышающих напряжение срабатывания указателя напряжения и даже номинальное напряжение отключенной линии. Принципиальным отличием наведенного напряжения от рабочего является относительно низкая мощность источника, что позволяет путем установки переносного заземления обеспечить безопасность на рабочем месте электромонтеров.

Таким образом, при обнаружении наличия напряжения перед членами ОВБ постоянно встает вопрос: «Устанавливать защитное заземление, идя на определенный риск, или прекращать все дальнейшие операции по подготовке рабочего места?». Для исключения риска установки переносного заземления при наличии на проводах ВЛ рабочего напряжения необходимо ввести в алгоритм действий при подготовке рабочего места операцию классификации обнаруженного напряжения: рабочее или наведенное. Такой порядок работы обеспечивает безопасность персонала при высокой эффективности производственного процесса.

Поэтому, в случае обнаружения напряжения на проводах линии электропередачи, отключенной и подлежащей заземлению, необходимо определить наличие на них только наведенного напряжения, подтвердив тем самым отсутствие рабочего напряжения.

Решить задачу распознавания наведенного напряжения позволяет разработанный в ЗАО «Техношанс» способ определения наведенного напряжения.

Особую ценность этому способу придает то, что все действия по обнаружению наведенного напряжения могут быть выполнены с помощью серийно изготавливаемых указателей напряжения и электроизолирующих штанг с поверхности земли (без подъема на опоры линии электропередачи), что существенно повышает безопасность персонала. Физической основой предлагаемого способа является то, что расстояния между отключенной линией электропередачи и действующей линией более высокого напряжения во много раз превышают расстояния между фазными проводами отключенной линии. В этом случае переменные электрические потенциалы, наводимые на проводах отключенной линии, оказываются практически совпадающими по фазе и амплитуде.

Мгновенные значения разности потенциалов на проводах отключенной линии не могут достигнуть напряжения срабатывания двухполюсного указателя, рассчитанного на номинальное линейное напряжение этой линии. Отсутствие показаний двухполюсного указателя свидетельствует об отсутствии рабочего напряжения на проводах линии электропередачи. В этом случае при наличии какого-либо напряжения на проводах линии электропередачи есть основания классифицировать его как наведенное.

Способ определения наведенного напряжения содержит два этапа и осуществляется путем последовательного применения однополюсных и двухполюсных указателей напряжения.

На первом этапе обнаружения наведенного напряжения касаются рабочей частью однополюсного указателя поочередно каждого провода той цепи линии электропередачи, которая должна быть отключена. Если индикаторная часть однополюсного указателя напряжения не срабатывает, можно сделать заключение об отсутствии, как рабочего, так и наведенного напряжения. В этом случае можно приступать к установке переносного заземления и выполнять ремонтные работы на линии электропередачи.

Если по какой-либо причине линия осталась под рабочим напряжением, для нее справедливы векторная диаграмма напряжений, представленная на рисунке 2, и следующие соотношения:

где Uл.раб. -- действующее значение рабочего линейного напряжения, В;

Uном. -- номинальное напряжение цепи линии электропередачи, В;

Uф.раб. -- действующее значение рабочего фазного напряжения, В.

В этом случае блок индикации однополюсного указателя напряжения сигнализирует о наличии напряжения. Если цепь линии отключена, но на ее проводах присутствует наведенное напряжение, справедливы векторная диаграмма напряжений, представленная на рисунке 4, и следующие соотношения:

где Uл.нав. -- действующее значение наведенного линейного напряжения, В;

Uф.нав. -- действующее значение наведенного фазного напряжения, В.

Рисунок 2. Векторная диаграмма трехфазной системы напряжений на проводах неотключенной линии электропередачи

В этом случае индикаторная часть однополюсного указателя напряжения также сигнализирует о наличии напряжения.

Во всех случаях срабатывания однополюсного указателя напряжения можно сделать вывод о наличии либо рабочего, либо наведенного напряжения. Это означает, что перед установкой переносного заземления необходимо классифицировать напряжение на проводах линии электропередачи, что составляет содержание второго этапа обнаружения наведенного напряжения. На этом этапе электродами-наконечниками двухполюсного указателя касаются проводов линии электропередачи таким образом, чтобы обеспечить поочередное попарное сравнение электрических потенциалов фазных проводов, т. е. индикацию линейных напряжений. В соответствии с диаграммами на рисунках 4 и 5 блок индикации двухполюсного указателя покажет наличие только рабочего линейного напряжения Uл.раб., присутствующего на проводах неотключенной по какой-либо причине линии электропередачи. В этом случае нельзя устанавливать переносное заземление и проводить ремонтные работы до отключения линии.

При наличии только наведенного напряжения элемент индикации двухполюсного указателя не покажет наличие напряжения (вследствие незначительной величины Uл.нав.), что позволяет классифицировать напряжение на проводах как наведенное. В этом случае можно устанавливать переносное заземление и проводить ремонтные работы на отключенной цепи линии электропередачи, принимая соответствующие меры обеспечения безопасности.

В ЗАО «Техношанс» разработаны и изготавливаются электрозащитные средства, входящие в систему технических средств, позволяющих производить работы на ВЛ 6-10 кВ (в том числе и все операции по подготовке рабочего места) с поверхности земли без подъема на опоры линии электропередачи.

На основе этого комплекса электрозащитных средств разработана Инструкция по выполнению работ при проведении классификации напряжения (рабочее или наведенное) на линиях электропередачи, расположенных вблизи других действующих электроустановок, позволяющая реализовать предложенный выше способ.

Разработанный способ классификации напряжения успешно прошел испытания в ОАО «Мосэнерго» на отключенной ВЛ 10 кВ в «коридоре» из двух действующих ВЛ 220 кВ.

ПРИБОРЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ОСУЩЕСТВЛЕНИЯ КОНТРОЛЯ НАД НАПРЯЖЕНИЕМ.

УКАЗАТЕЛИ НАПРЯЖЕНИЯ ДО 1000 В.

Перед выполнением работ на отключенных воздушных линиях электропередачи (ВЛЭП) необходимо проведение проверки отсутствия напряжения на токоведущих частях, которая осуществляется с помощью основного средства защиты - указателя напряжения (УН) контактного типа.

Указатели напряжения изготовляются двух типов: однополюсные, действующие при прохождении емкостного тока, и двухполюсные, действующие при прохождении активного тока.

Однополюсные УН до 1000 В применяются для определения фазного провода в электроустановках с глухозаземленной нейтралью. Они имеют однотипные конструкции, в которых контакты-наконечники выполняются в виде жала отвертки. Недостатком всех однополюсных указателей является чувствительность к наведенному напряжению вследствие емкостных и индуктивных связей (между жилами в кабеле, проводами в пучке и т.д.).

Двухполюсные указатели напряжения более универсальны и вследствие этого шире распространены. Они, как правило, работоспособны и в цепях постоянного тока.

В указателях низкого напряжения, выпускавшихся промышленно до 1990-1995 годов, источником сигнала о наличии напряжения является, как правило, только неоновая лампа, которая достаточно легко может быть повреждена механически. При использовании указателя в наружных установках и в солнечный день световой сигнал ее мало заметен.

В разработках последних лет в качестве устройства индикации все чаще используются светодиоды. Применение светодиодов значительно увеличивает яркость свечения и надежность работы прибора, а также позволяет уменьшить габаритные размеры указателя и его массу. К сожалению, при использовании указателя в солнечный день световая индикация напряженности прибора может оказаться малозаметной. Поэтому в данных условиях необходима комбинированная индикация, состоящая, например, из синхронной подачи световых и звуковых сигналов, что улучшает восприятие опасной ситуации.

Отечественной промышленностью также выпускаются указатели, позволяющие помимо вышеперечисленного, оценивать уровень напряжения. Это достигается благодаря использованию специальных газоразрядных индикаторов (например, ИН-9), которые способны менять длину светящегося столба вдоль стержневого катода пропорционально протекающему току, или за счет применения нескольких индикаторов, каждый из которых сигнализирует о достижении напряжением определенного значения (порога).

Среди двухполюсных указателей особое место занимают универсальные указатели напряжения. В некоторых из них, кроме вышеперечисленных функций (проверка наличия-отсутствия напряжения и оценка уровня проверяемого напряжения), присутствует и такая функция, как определение гальванической связи в цепи ("прозвонка" цепи). В универсальные УН для светозвуковой сигнализации и для проверки гальванической связи цепи устанавливаются источник питания.

Авторами собрана информация об основных типах УН, применяемых в электроэнергетике, и о новых разработках. Анализ полученных данных позволяет разделить двухполюсные указатели напряжения на узко специализированные (УН-1М («РЕТО», г. Москва), ПИН90М («Энергоприбор», г. Ереван) и т.д.) и универсальные («Контакт-55ЭМ», «Контакт-57Э» («Экипаж», г. Харьков), «Барс-020» («Барс», г. Новосибирск), «УНЗП 24-380В» («ЭНЕСКОМ», г. Минск) и т.д.).

Основным недостатком большинства универсальных УН является наличие переключателей режимов работы прибора, что приводило к травматизму персонала.

С учетом проведенных исследований сформулированы требования к универсальному УН:

· высокая надежность работы;

· наличие функций определения полярности и рода тока, а также определения фазного провода, проверки гальванической связи;

· наличие комбинированной индикации;

· отсутствие переключателей режимов работы;

· простота и удобство пользования.

В НПЦ «Электробезопасность» ВятГУ (г. Киров) разработан универсальный УН «Комби» (рисунок 6), удовлетворяющий этим требованиям. К основным достоинствам прибора относятся: хороший дизайн; отсутствие переключателей; сохранение, при отсутствии элемента питания, функция проверки наличия напряжения, определения рода тока, нахождения фазного провода; применение впервые в УН витого соединительного провода.

УКАЗАТЕЛИ НАПРЯЖЕНИЯ ДЛЯ ЭЛЕКТРОУСТАНОВОК НАПРЯЖЕНИЕМ ВЫШЕ 1000 В

Анализ травматизма по РАО "ЕЭС России" показывает, что большая часть несчастных случаев при работе на электроустановках обусловлена несоблюдением правил техники безопасности. Работа с УН свыше 1000 В, находящимися в эксплуатации, сопряжена с некото-рыми трудностями, обусловленными большими габаритами и массой УН, низкой надежностью распознавания сигнала о наличии напряжения и т.д. Эти обстоятельства провоцируют осознанный отказ работников от прове-рок с помощью УН, и приводят, как следствие, к травмам.

Однако, за по-следние годы наблюдается повышение качества УН. Происходит это, в ос-новном, вследствие применения современной элементной базы и более подробного рассмотрения принципов работы УН. Например, основной не-достаток старейшего указателя типа УВН-80 - это низкая надежность распознавания сигнала о наличии напряжения (особенно в солнечную погоду) из-за использования для визуальной сигнализации неоновой лампы. Известно, что неоновые лампы подвержены эффекту старении (снижение прозрачности колбы, уменьшение свечения лампы, повышение напряжения возникновения разряда), что также снижает надежность работы УН в целом. Следует учитывать, что отсутствие светового сигнала вследствие порчи лампы может расцениваться как отсутствие напряжения на проверяемом объекте, хотя в действительности объект находится под напряжением.

Учитывая это, разработчики современных УН вынуждены были отказаться от использования неоновых ламп для визуальной сигнализации. Так, в УН стали применяться светодиоды, которые позволяют значительно уве-личить яркость свечения по сравнению с неоновой лампой, а применение их совместно с фокусирующими линзами позволяет значительно увеличить расстояние распознаваемости тревожного сигнала. Для улучшения 1 восприятия визуальной информации в УН свыше 1000 В применяются: бленды, но применение подобных устройств значительно увеличивает га- и массу рабочей части, что затрудняет попадание контактом- наконечником на провод воздушной линии электропередачи может стать причиной замыкания проводов. Помимо визуальной сигнализации, в современных УН нашла применение акустическая сигнализация. Основная особенность заключается в том, что с ее помощью оператор может получать информацию, даже если он занят выполнением других задач, не связанных с контролем напряжения. В старых УН (УВН-80) подобная сигнализация отсутствовала из больших габаритных размеров излучателей, а также большой потребляемой мощности, необходимой для обеспечения требуемого уровня звукового давления. В современных УН для акустической сигнализации наиболее целесообразно использовать миниатюрный электродинамический излучатель со встроенным генератором. Другими достоинствами современных УН являются: использование фокусирующей линзы и затенителя, тактильной сигнализации (УВНК-10) - разработчик "Техношанс" г. Минск), малые габариты и масса рабочей части (УВН(С) 6-10 кВ - разработчик «Электроприбор», г. Краснодар), отсутствие источника питания (УВНИ - 10СЗ - разработчик РЭТО, г. Москва).

К сожалению, современные УН также не лишены недостатков. Рабочие части некоторых типов УН имеют большие габаритные размеры (УВНК-6-З5кВ - разработчик «Электроком», г. Москва; УВН80-2М - разработчик ООО "Энергозащита", г. Ереван), оснащены встроенным источником питания (УВНК 6-35кВ, УВНИ-10СЗ-ИП - разработчик РЭТО г. Москва), обладают значительной массой (УВНИШ-10СЗИП - разработчик РЭТО, г. Москва, УВНК6-35кВ).

Но даже такой УН обладает некоторыми недостатками: большие габаритные размеры, высокая стоимость. В связи с этим очевидна задача разработки новых более удобных и надежных УН, удовлетворяющих следующим требованиям:

· минимальная масса и размеры рабочей части;

· яркость светового сигнала должна быть достаточной для уверенного распознавания при высоком уровне внешней засветки;

· уровень звукового давления должен быть достаточным для уверенного распознавания при высоком уровне внешних шумов;

· высокая надежность;

· малая стоимость.

БЕСКОНТАКТНЫЕ УКАЗАТЕЛИ НАПРЯЖЕНИЯ ВЫШЕ 1000 В.

Принцип действия бесконтактного указателя основан на электростатической индукции.

УНБ состоят из рабочей части, изолирующей части и рукоятки. Рабочая часть содержит источник питания, измеритель и индикатор напряжения В зависимости от уровня напряжения ВЛЭП расстояние срабатывания УНБ может составлять от нескольких сантиметров до метра. УНБ и изготавливаются в металлических или пластмассовых корпусах при этом оба варианта допускают непосредственный контакт с проводом ВЛЭП. УНБ в металлическом корпусе не обладают направленностью срабатывания, что позволяет произвольно располагать их относительно провода.

В отличие от УН, отсутствие необходимости непосредственного контакта с проводом упрощает позиционирование УНБ относительно провода, но при этом снижается достоверность тестирования на наличие напряжения. Отсутствие прямого контакта с проводом ВЛЭП не позволяет создать УНБ без источника питания в рабочей части, что усложняет и удорожает его конструкцию в целом. Наличие источника питания вынуждает устанавливать переключатель питания, снижающий надежность работы УНБ.

Эту проблему можно решить, например, с помощью устройства автоматического включения при установке рабочей части УНБ на штангу

Анализируя характеристики УНБ, находящихся в эксплуатации и новейших разработок (УВНБ - разработчик КБ "Луч", г. Ярославль; УН 6-10/Б01 и УВНК 6-35 - разработчик "Электроком", г. Москва), можно сделать вывод, что все они обладают примерно одинаковыми параметрами, за исключением типа источника питания и общей массы.

Специфика эксплуатации и проверки УНБ ставит под сомнение использование их как основного средства защиты, к каковым их относят некоторые производители. Встроенная проверка не может гарантировать достоверности работоспособности УНБ, а тестирование с помощью приборов для проверки контактных указателей напряжения в полевых условиях затруднено или невозможно.

Поэтому, при эксплуатации УНБ необходимо помнить, что они являются только дополнительным средством защиты и не могут быть единственным средством для проверки наличия напряжения.

ОСОБЕННОСТИ ПРИМЕНЕНИЯ УСТРОЙСТВ ДЛЯ ПРОВЕРКИ УКАЗАТЕЛЕЙ НАПРЯЖЕНИЯ ВЫШЕ 1000 В В ПОЛЕВЫХ УСЛОВИЯХ

Перед началом работы с указателем напряжения свыше 1000 В (УН) необходимо проверить его исправность путем прикосновения контактного электрода к токоведущим частям, заведомо находящимся под напряжением. На практике нередки случаи, когда поблизости от места, где должно быть проведено определение отсутствия напряжения, нет токоведущих частей, заведомо находящихся под напряжением (полевые условия). Поэтому, в таких случаях рекомендуется использовать для проверки спе-циальные приборы, служащие носимыми источниками высокого напряже-ния (ППУ).

Страницы: 1, 2


© 2010 РЕФЕРАТЫ