Приступаем к построению повёрнутых планов скоростей для каждого положения. Рассмотрим пример построения для положения №5:
У кривошипа определяем скорость точки А
(2.2)
где: - длина звена,
- угловая скорость кривошипа,
Для построения вектора скорости точки А определяем масштабный коэффициент
(2.3)
где: - скорость точки А,
- вектор скорости точки А,
- полюс, выбираемый произвольно
Для определения скорости точки B запишем систему уравнений:
(2.4)
Вектор скорости точки А - VA известен по величине и по направлению. Вектор скорости точки С - VC равен нулю, т. к. точка С расположена на неподвижной шарнирной опоре. Вектора скорости VBA и VBC неизвестны ни по величине, ни по направлению, но нам известны их линии действия, на пересечении которых мы получим точку b. Соединив, полученную точку с полюсом р найдём длину вектора скорости точки B.
Для определения скорости центра масс 2-го звена S2 воспользуемся соотношением:
(2.5)
где: , - расстояния между соответствующими точками на механизме, м
, - длинны векторов скоростей на плане, мм
мм
Соединив, точку и р получим скорость центра масс второго звена.
Для определения скорости точки D воспользуемся следующим соотношением
(2.6)
где: , - расстояния между соответствующими точками на механизме, м , - длинны векторов скоростей на плане, мм
мм
Для определения скорости центра масс 3-го звена S3 воспользуемся соотношением:
(2.7)
где: , - расстояния между соответствующими точками на механизме, м
, - длинны векторов скоростей на плане, мм
мм
т.к. , то
Так как центр массы 4-го звена совпадает точкой D то,
Для определения скорости точки D' запишем систему уравнений:
(2.8)
Вектор скорости точки D - VD известен по величине и по направлению. Вектор скорости точки E - VE равен нулю, т. к. точка E расположена на неподвижной опоре.
Вектора скорости VD'D и VD'E неизвестны ни по величине, ни по направлению, но нам известны их линии действия, на пересечении которых мы получим точку d'. Соединив, полученную точку с полюсом р найдём длину вектора скорости точки D'.
Так как 5-е звено совершает только поступательное движение то, скорости всех точек данного звена одинаковы.
Определим значения угловых скоростей звеньев.
Направление определяем, перенеся вектор ab в точку S2 - второе звено вращается против часовой стрелки. Аналогично получим, что направлена по часовой стрелке. Скорости остальных точек определяются аналогичным образом. Все значения сводим в таблицу(2.1).
Таблица 2.1 - Значения линейных и угловых скоростей.
N
положения
VB,
VS2,
VD=VS4,
VS3,
VD'=VS5,
VAB,
,
,
1
0
2,994
0
0
0
4,71
15,596
0
2
2,734
2,933
4,614
1,452
3,367
5,959
19,731
17,089
3
5,335
4,351
9,002
2,834
7,958
4,891
16,194
33,341
4
4,94
4,781
8,337
2,624
8,241
0,767
2,54
30,877
5
3,572
4,113
6,029
1,898
5,989
2,816
9,326
22,328
6
2,166
3,265
3,655
1,151
3,498
4,716
17,177
13,537
7
0
2,994
0
0
0
4,71
15,596
0
8
1,543
3,445
2,604
0,82
2,443
3,659
12,116
9,645
9
3,547
4,237
5,986
1,884
5,877
1,785
5,911
22,17
10
4,596
4,666
7,756
2,441
7,737
0,343
1,135
28,724
11
4,675
7,851
2,472
7,338
0,751
2,487
29,078
12
3,701
4,262
6,246
1,966
5,044
1,999
6,62
23,133
2.2 Определение приведённого момента инерции звеньев.
Приведённый момент инерции определяется по формуле:
(2.9)
где: - масса i-го звена рычажного механизма, кг
- линейная скорость центра масс i-го звена,
- угловая скорость i-го звена,
- приведённый момент инерции i-го звена по отношению к центру масс
(2.10)
- для звена, совершающего сложное движение
- для звена, совершающего вращательное или колебательное движения
- для звена, совершающего поступательное движение
Запишем формулу для нашего механизма:
(2.11)
Для 5-го положения приведём расчёт, а для остальных положений сведём значение в таблицу 2.2
кг•м2
кг•м2
кг•м2
Подставив все известные величины в формулу (2.11) получим:
кг•м2
Таблица 2.2 - Приведённые моменты инерции.
N положения
, кг•м2
N положения
, кг•м2
1
0,0286
7
0,0286
2
0,0690
8
0,0519
3
0,2544
9
0,1529
4
0,2683
10
0,2401
5
0,1558
11
0,2232
6
0,0721
12
0,1277
Для построения графика приведённого момента инерции необходимо Рассчитать масштабные коэффициенты.
, (2.12)
где: - масштабный коэффициент по оси
- максимальное значение , кг•м2
- значение на графике, мм
, (2.13)
где: - масштабный коэффициент по оси ц
- принятая длинна одного оборота по оси ц
2.3 Определение приведённого момента сопротивления.
На планах скоростей прикладываем все силы, действующие на механизм, и указываем их плечи. Составляем сумму моментов относительно полюса и решаем уравнение.
Для 1-го положения:
(2.14)
где: плечи соответствующих сил, снятые с плана скоростей, мм.
Вследствие того что, пересечение касательных и оси выходит за приделы формата, то ab определим из геометрии с помощью следующей формулы:
,мм
мм
Определяем момент инерции маховика
, (2.20)
Маховик устанавливается на валу звена приведения.
Определим основные параметры маховика.
,кг (2,21)
где: - масса маховика, кг
- плотность материала, (материал-Сталь 45)
- ширина маховика, м
- диаметр маховика, м
,м (2,22)
где: - коэффициент (0,1?0,3),
м
м
кг
3. СИЛОВОЙ АНАЛИЗ РЫЧАЖНОГО МЕХАНИЗМА
3.1 Построение плана скоростей для расчётного положения
Расчётным положением является положение №11. Построение плана скоростей описано в разделе №2. Масштабный коэффициент плана скоростей
3.2 Определение ускорений
Определяем угловое ускорение звена 1.
, (3.1)
где: - момент от сил движущих,
- момент от сил сопротивления,
- приведённый момент инерции маховика,
- приведённый момент инерции рычажного механизма для расчётного положения,
- первая производная от приведённого момента инерции механизма для расчётного положения
, (3.2)
где: - масштабный коэффициент по оси ,
- масштабный коэффициент по оси ц,
- угол между касательной, проведённой к кривой графика в расчётном положении и осью ц.
Строим план ускорений для расчётного положения.
Скорость точки А определяем по формуле
, (3.3)
где: - ускорение точки А,
- нормальное ускорение точки А относительно точки О,
- тангенциальное (касательное) ускорение точки А,
Ускорение найдём по формуле:
, (3.4)
где: - угловая скорость кривошипа,
- длина звена ОА, м
Ускорение найдём по формуле:
, (3.5)
Из произвольно выбранного полюса откладываем вектор длинной 100мм. Найдём масштабный коэффициент плана скоростей.
, (3.6)
Определим длину вектора :
Т.к. <1мм, то на плане ускорений вектор не строим.
Ускорение точки А определим из следующеё формулы:
Определим ускорение точки B из следующей системы уравнений:
, (3.7)
Для определения нормальных ускорений точки В относительно точек А и С
Воспользуемся следующими формулами:
Ускорение точки С равно нулю, т.к. она неподвижна.
Определим длину векторов и :
Т.к. <1мм, то на плане ускорений вектор не строим.
Ускорение точки В найдём, решив системе (3.7) векторным способом:
Из вершины вектора ускорения точки А () откладываем вектор (параллелен звену АВ и направлен от В к А), из вершины вектора проводим прямую перпендикулярную звену АВ (линия действия ); из полюса откладываем вектор (параллелен звену ВС и направлен от В к С), из вершины вектора проводим прямую перпендикулярную звену ВС (линия действия ); на пересечении линий действия векторов и получим точку b, соединив полученную точку с полюсом, получим вектор ускорения точки В. Из плана ускорений определяем вектора тангенциальных ускорений и ускорение точки В:
Из полученных тангенциальных ускорений найдём угловые ускорения 2-го и 3-го звеньев:
Ускорение точки D найдём из следующего соотношения:
(3.8)
где: , - расстояния между соответствующими точками на механизме, м
, - длинны векторов ускорений на плане, мм
мм
Ускорение точки D' определим из следующей системы уравнений:
, (3.9)
где: ==0, т.к. звенья 4 и 5 не совершают вращательного движения,
линия действия направлена вертикально,
линия действия направлена горизонтально.
Решая систему (3.9) получимУскорение точки D' равно:
Определим ускорения центров масс звеньев:
Ускорение центра масс 2-го звена найдём из соотношения (3.10)
(3.10)
Из плана ускорений мм
мм
мм
Ускорение центра масс 3-го звена найдём из соотношения (3.11)
(3.10)
Из плана ускорений мм
мм
мм
Ускорения центров масс 4-го и 5-го звеньев равны ускорениям точек D и D' соответственно:
Значения всех ускорений сведём в таблицу:
Таблица З.1 - Ускорения звеньев.
Ускорение
точек механизма
Значение,
Ускорение
центров масс
Значение,
Угловые
ускорения
Значение,
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
3.3 Определение сил и моментов инерции звеньев
Силы инерции определяем по формуле:
(3.11)
где: - масса i-го звена, кг ;
- ускорение центра масс i-го звена,
Определяем моменты инерции звеньев:
(3.12)
где: - момент инерции i-го звена,
- момент инерции i-го звена относительно центра масс,
- угловая скорость i-го звена,
Рассчитаем силу тяжести каждого звена:
3.4 Определение реакций в кинематических парах и уравновешивающей силы методом планов
Рассмотрим группу Асура 5-0: Силаи найдем из следующего уравнения:
Масштабный коэффициент сил:
где - алгебраическое значение силы, Н
длина вектора силы на плане, .
Определим длины векторов: ,
Из плана сил определяем значения неизвестных сил:
Таблица 3.2 - Силы и вектора сил 4-го звена.
78,4
1139,472
800
78,4
339,472
10,321
150
105,318
10,321
44,691
Рассмотрим звено №4 (ползун):
Так как силы и равны нулю, то на ползун действует только две силы, которые расположены на одной прямой и противоположны по направлению.
Рассмотрим группу Асура 2-3:
Найдём тангенциальные реакции из следующих уравнений:
(3.13)
(3.14)
Из уравнения (3.13) получим
Из уравнения (3.14) получим
С помощью плана сил определим неизвестные реакции и :
Найдём масштабный коэффициент
Из плана сил определяем значения неизвестных сил:
Реакцию определяем из следующего векторного уравнения
Таблица 3.3 - Силы и вектора сил 2-го и 3-го звеньев.
954,968
957,62
1352,403
1161,317
54,88
339,472
65,66
501,053
326,893
901,331
123,349
123,691
174,684
150
7,089
43,848
8,481
64,719
42,223
116,421
Рассмотрим начальный механизм.
Определим уравновешивающую силу
Уравновешивающий момент равен
Реакцию определяем графически
Из плана сил находим
3.5 Определение уравновешивающей силы методом Жуковского
Для этого к повёрнутому на плану скоростей в соответствующих точках прикладываем все внешние силы действующие на механизм, не изменяя их направления. Моменты раскладываем на пару сил, изменив их направления.
, (3.15)
где: и - пара сил,
- момент инерции i-го звена,
- длина i-го звена,
Записываем уравнение моментов сил относительно полюса :
, отсюда
Уравновешивающий момент равен
3.6 Расчёт погрешности 2-х методов
, (3.16)
где: - сила полученная методом Жуковского,
- сила полученная методом планов,
- погрешность,
4. ПРОЕКТИРОВАНИЕ КИНЕМАТИЧЕСКОЙ СХЕМЫ ПЛАНЕТАРНОГО РЕДУТОРА И РАСЧЁТ ЭВОЛЬВЕНТНОГО ЗАЦЕПЛЕНИЯ
4.1 подбор числа зубьев и числа сателлитов планетарного редуктора
Рисунок 4.1
Передаточное отношение равно
(4.1)
где: - передаточное отношение от 5-го звена к водилу, при неподвижном третьем звене
- передаточное отношение от 2-го звена к первому
из задания
(4.2)
где: - число зубьев первого колеса
- число зубьев второго колеса
Определим неизвестные числа зубьев колёс:
Запишем условие соосности
(4.3)
Зная передаточное отношение и условие соосности подбираем значения чисел зубьев, которые удовлетворяют этим условиям.
Исходя из предыдущих двух условий, выбираем:
, , ,
Передаточное отношение
- выполняется
Условие соосности
- выполняется
Проверяем условие соседства:
(4.4)
где: - число сателлитов планетарного механизма
При имеем
- условие соседства выполняется
Проверяем условие сборки
(4.5)
где : - сумма чисел зубьев в одной из ступеней механизма
- целое число
- условие сборки выполняется
4.2 Исследование планетарного механизма графическим и аналитическим способом