Механизм поперечно-строгального станка
Механизм поперечно-строгального станка
Изм
Лист
№ докум.
Подп.
Дата
Лист
0601С.23.02.000 РР
Кафедра «Основы проектирования машин»
Тема
Механизм поперечно-строгального станка
Содержание
1 СИНТЕЗ РЫЧАЖНОГО МЕХАНИЗМА
1.1 Структурный анализ механизма
1.2 Определение недостающих размеров
1.3 Определение скоростей точек механизма
1.4Определение ускорений точек механизма
1.5 Диаграмма движения выходного звена
1.6 Определение угловых скоростей и ускорений
1.7 Определение ускорений центров масс звеньев механизма
1.8 Аналитический метод расчёта
2 СИЛОВОЙ АНАЛИЗ РЫЧАЖНОГО МЕХАНИЗМА
2.1 Определение сил инерции
2.2 Расчёт диады 4-5
2.3 Расчёт диады 2-3
2.4 Расчет кривошипа
2.5 Определение уравновешенной силы методом Жуковского
2.6 Определение мощностей
2.7 Определение кинетической энергии и приведённого момента инерции механизма
3 ГЕОМЕТРИЧЕСКИЙ РАСЧЁТ ЗУБЧАТОЙ ПЕРЕДАЧИ, ПРОЕКТИРОВАНИЕ ПЛАНЕТАРНОГО МЕХАНИЗМА
3.1 Геометрический расчёт зубчатой передачи
3.2 Определение передаточного отношения планетарной ступени и подбор чисел зубьев колёс
3.3 Определение частот вращения зубчатых колёс аналитическим методом
4 СИНТЕЗ И АНАЛИЗ КУЛАЧКОВОГО МЕХАНИЗМА
4.1 Построение кинематических диаграмм и определение масштабных коэффициентов
4.2 Построение профиля кулачка
4.3 Определение максимальной линейной скорости и ускорения толкателя
5 СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ
Введение
Поперечно-строгальный станок предназначен для строгания плоских поверхностей.
Привод станка состоит из простой зубчатой передачи и планетарной передачи, который соединен с электромотором.
Резание металла осуществляется резцом, установленным в резцовой головке, закреплённой на ползунке, при рабочем ходе ползунка.
Кривошип жёстко соединен с зубчатым колесом. Во время перебега в конце холостого хода осуществляется перемещение стола с заготовкой на величину подачи с помощью храпового механизма и кулачкового механизма, кулачёк которого жестко соединен с зубчатым колесом.
При проектировании профиля кулачка необходимо обеспечить заданный закон движения толкателя.
1 Синтез и анализ рычажного механизма
Исходные данные: lo1o2=460мм ; H=460мм ; nкр=70 мин-1 ; К=1,5;
1.1. Структурный анализ механизма :
Степень подвижности механизма:
;
где к=5 - число подвижных звеньев,
p1=7 - число одноподвижных кинематических пар,
p2=0 - число двухподвижных кинематических пар.
Разложение механизма на структурные группы Асура
Формула строения механизма:
I(0;1)> II2(2;3)>II2(4;5)
Механизм II класса , второго порядка.
1.2. Определение недостающих размеров:
Угол размаха кулисы:
Длина кривошипа:
Длина кулисы:
Масштабный коэффициент построения схемы :
Строим 12 планов механизма , приняв за начало отсчета крайнее положение, соответствующее началу рабочего хода механизма.
1.3 Определение скоростей точек механизма.
Скорость точки А кривошипа определяем по формуле :
,
где , где nкр=70мин-1
Планы скоростей строим в масштабе :
Скорость точки А' находим графически , решая совместно систему :
На плане Рvа'=30мм . Абсолютная величина скорости точки А' :
Скорость точки В находим из соотношения :
, откуда
Абсолютная величина скорости точки В :
Скорость точки С определим, решая совместно систему :
На плане Рvс=34мм. Абсолютная величина скорости точки С :
, на плане =14мм
Для всех остальных положений скорости определяем аналогично.
Полученные результаты сводим в таблицу 1.1
Таблица 1.1.- Значения скоростей
Скоростим/с
|
Положения механизма
|
|
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
|
va
|
1.03
|
1,03
|
1,03
|
1,03
|
1,03
|
1,03
|
1,03
|
1,03
|
1,03
|
1,03
|
1,03
|
1,03
|
|
va'
|
0,6
|
1,02
|
1,2
|
1,26
|
1,1
|
0,7
|
0.16
|
0,56
|
1.1
|
1,24
|
0,64
|
1,32
|
|
vb
|
0,88
|
1,32
|
1,5
|
1,6
|
1,43
|
0,92
|
0,26
|
1,18
|
2,5
|
2,8
|
1,3
|
0
|
|
vc
|
0,68
|
1,24
|
1,5
|
1,6
|
1,48
|
0,92
|
0,32
|
1,4
|
2,54
|
2,8
|
1
|
0
|
|
|
1.4 Определение ускорений точек механизма.
Пересчетный коэффициент С :
Ускорение точки А конца кривошипа определяем по формуле:
Ускорение аа направлено по кривошипу к центру вращения О1.
Выбираем масштабный коэффициент ускорений:
На плане ускорений изображаем ускорение точки А отрезком Раа=55мм
Ускорение точки А' определяем, решая совместно систему:
Кориолисово ускорение:
;
По свойству подобия определяем ускорение точки В :
;
Система уравнений для определения ускорений точки С:
, откуда
Ускорения всех точек найдены. Ускорения для остальных положений механизма находим аналогично . Значения ускорений сводим в таблицу
Таблица 1.2. - Значения ускорений
Ускорения м/с2
|
Положения механизма
|
|
|
1
|
3
|
5
|
7
|
9
|
11
|
12
|
|
аа
|
7,5
|
7,5
|
7,5
|
7,5
|
7,5
|
7,5
|
7,5
|
|
аА'
|
3,8
|
2,5
|
2,6
|
6,4
|
8,5
|
10,3
|
7,5
|
|
ab
|
5,7
|
3,4
|
3,8
|
10,5
|
19,3
|
21,4
|
11
|
|
ac
|
5,8
|
2,1
|
1,7
|
10,5
|
16,1
|
20,8
|
11,7
|
|
|
1.5 Диаграммы движения выходного звена.
Диаграмму перемещения строим , используя полученную из S-t плана механизма траекторию движения точки С.
Диаграммы скорости V-t и ускорений A-t строим из полученных 12 планов скоростей и 7 планов ускорений.
Масштабные коэффициенты диаграмм:
,
где хt=180 мм
1.6 Определение угловых скоростей и ускорений
Угловые скорости и ускорения звеньев механизма определяются для первого положения
1.7. Определение ускорений центров масс звеньев механизма
Ускорение центров масс звеньев определяем из планов ускорений:
1.8 Аналитический метод расчета
1. Расчет ведется для первого положения кулисы:
2. В проекциях на координатные оси:
3. Поделим второе уравнение на первое:
4. Передаточное отношение U31:
5. Передаточная функция ускорений U'31:
6. Угловая скорость кулисы:
7. Угловое ускорение кулисы:
8. Уравнение замкнутости верхнего контура в проекциях на оси:
(1)
9. Решая совместно два уравнения находим sin?4:
10 . Дифференцируем уравнения (1) по параметру ?1:
(2)
где и - соответствующие передаточные отношения.
11. Передаточное отношение U43 и угловая скорость ?4:
12. Передаточное отношение U53:
13. Дифференцируем уравнение по параметру ?3:
(3)
где и
14. Из второго уравнения системы (3) определяем U'43:
15. Из первого уравнения системы (3) находим U'53:
16. Скорость и ускорение точки С выходного звена:
1.9 Расчет на ЭВМ
Program kulise1;
User crt;
Const
h=0.;
l0=0.456;
l1=0.143;
shag=30;
w1=7.33;
a=0.270;
var
f1, w3, e3, vb, ab, u53, u53_, u31_:real;
cosf3, tgf3, sinf3: real;
begin
write (`,Введите угол в градусах`);
read(f1);
repeat
w3:=w1*((sqr(l1)+l0*l1*sin(f1))/(sqr(l1)+sqr(l0)+2*l0*l1-*sin(f1)));
u31_;=l0*l1*cos(n)*(sqr(l0)-sqr(l1))/(sqr(sqr(l1)+sqr(l0)+2*l0*l1*sin(f1)));
E3:=sqr(w1)*u31_;
cosf3:=sqrt((sqr(l1)*sqr(cos(f1)))/(sqr(l1)+sqr(l0)+2*l0*l1*sin(f1)));
tgf3:=(l0+l1*sin(f1))/(l1*cos(f1));
sinf3:=tgf3/sqrt(1+sqr(tgf3));
u53:=-(a/(sqr(sinf3)));
u53_:=(2*a*cosf3)/(sqr(sinf3)*sinf3);
Ab:=sqr(w3)*u53_+E3*u53;
Writeln(`'Скорость Vb=`, Vb=`,Vb:3:4);
Writeln(`'Ускорение Ab=`, Ab=`,Vb:3:4);
Decay(10000)
Writein;
F1:=F1+Shag;
Until F1>=
End.
Положения
|
Скорости
|
Ускорения
|
|
0
|
0
|
76,6
|
|
1
|
35,963
|
49,8936
|
|
2
|
63,5161
|
30,9
|
|
3
|
80,1509
|
18,5649
|
|
4
|
86,5
|
0
|
|
5
|
85,3494
|
-7,3299
|
|
6
|
77,2378
|
-14,32
|
|
7
|
56,7787
|
-63,818
|
|
8
|
0
|
200,7
|
|
9
|
-132,198
|
-273,396
|
|
10
|
-260
|
0
|
|
11
|
-94,5398
|
272,2544
|
|
|
|
|
|
|
Планы скоростей и ускорений:
Рис. 3 - Диаграмма скоростей
Рис. 4 - Диаграмма ускорений
2 Силовой анализ механизма
Исходные данные:
вес кулисы кг;
вес шатуна кг;
вес ползуна кг.
2.1 Силы тяжести и силы инерции
Силы тяжести:
Н
Н
Н
Силы инерции:
Н
Н
Н
Н м
мм
2.2 Расчет диады 4-5
Для расчета этой диады изобразим ее со всеми приложенными к ней силами: силами тяжести, полезного сопротивления и реакциями.
Эти реакции в поступательных парах известны по направлению, но неизвестны по модулю. Определяем с помощью плана сил. Составим уравнение равновесия диады 4-5.
Строим план сил диады в масштабе сил
Уравнение содержит три неизвестных, поэтому составляем дополнительное уравнение равновесия в форме моментов сил относительно точки С.
Рассчитаем вектора сил
Строим план сил по уравнению сил, в том порядке как силы стояли в уравнении.
Значения сил из плана сил
Для рассмотрения внутренних реакций в диаде 4-5 необходимо рассмотреть равновесие одного звена, звена 4.
2.3 Расчет диады 2-3
Изобразим диаду со всеми приложенными к ней силами. В точках А и О2 взамен отброшенных связей прикладываем реакции и . В точке В прикладываем ранее найденную реакцию. Составляем уравнение равновесия диады 2-3.
Плечи измеряем на плане. Теперь в уравнении сил две неизвестных, поэтому строим план сил и определяем реакцию, как замыкающий вектор.
Строим план диады в масштабе сил . Значения сил из плана сил.
2.4 Расчет кривошипа
Изобразим кривошип с приложенными к нему силами и уравновешивающей силой , эквивалентной силе действия на кривошип со стороны двигателя. Действие отброшенных связей учитываем вводя реакции и . Определяем уравновешивающую силу, считая, что она приложена в точке А кривошипа, перпендикулярно ему. Составляем уравнение равновесия кривошипа.
Значение силы определяем из плана сил.
2.5 Определение уравновешивающей силы методом Жуковского
Строим повернутый на 900 план скоростей и в соответствующих точках прикладываем все внешние силы, включая и силы инерции. Составим уравнение моментов относительно точки , считая неизвестной:
Подлинность графического метода:
2.6. Определение мощностей
Потери мощности в кинематических парах:
Потери мощности на трение во вращательных парах:
где - коэффициент
- реакция во вращательной паре,
- радиус цапф.
Суммарная мощность трения
Мгновенно потребляемая мощность
Мощность привода, затрачиваемая на преодоление полезной нагрузки.
2.7 Определение кинетической энергии механизма
Кинетическая энергия механизма равна сумме кинетических энергий входящих в него массивных звеньев.
Приведенный момент инерции
3 Геометрический расчёт эвольвентного зубчатого зацепления. Синтез планетарного редуктора
3.1 Геометрический расчёт равносмещённого эвольвентного зубчатого зацепления
Исходные данные:
число зубьев шестерни: Z=14
число зубьев колеса: Z=28
модуль зубчатых колёс: m=4мм
Нарезание зубчатых колес производится инструментом реечного типа, имеющего параметры:
- коэффициент высоты головки зуба
- коэффициент радиального зазора
- угол профиля зуба рейки
Суммарное число зубьев колёс:
поэтому проектирую равносмещённое зацепление.
Делительно-межосевое расстояние:
мм
Начальное межосевое расстояние: мм
Угол зацепления:
Высота зуба:
мм
Коэффициент смещения:
Высота головки зуба:
мм
мм
Высота ножки зуба:
мм
мм
Делительный диаметр:
мм
мм
Основной диаметр:
мм
мм
Диаметры вершин:
мм
мм
Диаметр впадин:
мм
мм
Толщина зуба:
мм
мм
Делительный шаг:
мм
Основной шаг:
мм
Радиус галтели:
мм
Коэффициент перекрытия:
Коэффициент перекрытия, полученный аналитически:
Масштабный коэффициент построения зацепления:
3.1.1 Расчёт равносмещённого эвольвентного зубчатого зацепления на ЭВМ
Public Sub programma()
m = 4
Z1 = 14
Z2 = 28
ha = 1
c = 0.25
N = (20 * 3.14159) / 180
a = 0.5 * m * (Z1 + Z2)
h = 2.25 * m
x1 = (17 - Z1) / 17: x2 = -x1
ha1 = m * (ha + x1): ha2 = m * (ha + x2)
hf1 = m * (ha + c - x1): hf2 = m * (ha + c - x2)
d1 = m * Z1: d2 = m * Z2
db1 = d1 * Cos(N): db2 = d2 * Cos(N)
da1 = d1 + 2 * ha1: da2 = d2 + 2 * ha2
df1 = d1 - 2 * hf1: df2 = d2 - 2 * hf2
S1 = 0.5 * 3.14159 * m + 2 * x1 * m * Tan(N): S2 = 0.5 * 3.14159 * m + 2 * x2 * m * Tan(N)
P = 3.14149 * m
Pb = P * Cos(N)
Rf = 0.38 * m
Worksheets(2).Cells(10, 2) = a
Worksheets(2).Cells(11, 2) = h
Worksheets(2).Cells(12, 2) = x1
Worksheets(2).Cells(12, 3) = x2
Worksheets(2).Cells(13, 2) = ha1
Worksheets(2).Cells(13, 3) = ha2
Worksheets(2).Cells(14, 2) = hf1
Worksheets(2).Cells(14, 3) = hf2
Worksheets(2).Cells(15, 2) = d1
Worksheets(2).Cells(15, 3) = d2
Worksheets(2).Cells(16, 2) = db1
Worksheets(2).Cells(16, 3) = db2
Worksheets(2).Cells(17, 2) = da1
Worksheets(2).Cells(17, 3) = da2
Worksheets(2).Cells(18, 2) = df1
Worksheets(2).Cells(18, 3) = df2
Worksheets(2).Cells(19, 2) = S1
Worksheets(2).Cells(19, 3) = S2
Worksheets(2).Cells(20, 2) = P
Worksheets(2).Cells(21, 2) = Pb
Worksheets(2).Cells(22, 2) = Rf
End Sub
Таблица 3.1 - Параметры зубчатой передачи на ЭВМ
Исходные данные:
|
|
Число зубьев шестерни:
|
Z1=14
|
|
Число зубьев колеса:
|
Z2=28
|
|
Модуль:
|
m=4
|
|
Коэффициент головки зуба:
|
ha=1
|
|
Коэффициент радиального зазора:
|
C=0,25
|
|
Угол профиля зуба рейки:
|
?=20°
|
|
Результаты счёта:
|
|
|
Колесо
|
Шестерня
|
|
Межосевое расстояние:
|
84,000
|
|
Высота зуба:
|
13,500
|
|
Коэффициент смещения:
|
0,176
|
-0,176
|
|
Высота головки зуба:
|
3,312
|
4,688
|
|
Высота ножки зуба:
|
4,288
|
5,712
|
|
Делительный диаметр:
|
78,000
|
174,000
|
|
Основной диаметр:
|
52,636
|
105,267
|
|
Диаметр вершин:
|
65,424
|
118,576
|
|
Диаметр впадин:
|
47,324
|
100,676
|
|
Делительная толщина зуба:
|
10,452
|
8,397
|
|
Делительный шаг:
|
12,564
|
|
Основной шаг:
|
11,788
|
|
Радиус кривизны галтели:
|
1,521
|
|
|
3.2 Синтез планетарного редуктора
Исходные данные:
Частота вращения двигателя nдв=840 мин-1;
Частота вращения кривошипа nкр=70 мин-1;
Число зубьев шестерни z5=14;
Число зубьев колеса z6=28;
Знак передаточного отношения «- ;
Общее передаточное отношение редуктора:
Передаточное отношение простой передачи z5-z6:
Передаточное отношение планетарной передачи:
Передаточное отношение обращённого планетарного механизма - простого зубчатого ряда:
Формула Виллиса. Передаточное отношение обращённого механизма:
Подбор чисел зубьев планетарной передачи:
Условие соосности для данной передачи:
Принимаем числа зубьев колёс, равных: z1=24; z2=24; z3=48; z4=60.
По принятым числам зубьев определяем диаметры колёс:
Принимаем масштабный коэффициент построения кинематической схемы редуктора:
Скорость точки А зубчатого колеса 1:
Строим планы скоростей. Масштабный коэффициент плана скоростей:
Строим план частот вращения звеньев редуктора. Масштабный коэффициент плана частот вращения звеньев редуктора:
3.3 Определение частот вращения зубчатых колёс аналитическим и графическим методом
Значения частот, полученные аналитическим методом:
Значения частот, полученных графическим методом:
Определяем погрешность расчётов:
4 Синтез и анализ кулачкового механизма
Исходные данные:
Максимальный подъём толкателя h=20мм;
Рабочий угол кулачка ?р=280°;
Смещение оси толкателя е=0;
Угол давления ?=0;
Частота вращения кривошипа nкр=70 мин-1;
число зубьев шестерни:
число зубьев колеса:
4.1 Диаграмма движения толкателя
По заданному графику скорости толкателя v(t) графическим диффириенцированием по методу хорд получаем ускорение толкателя а=f(t), а графическим интегрированием по методу хорд получаем перемещения толкателя s=f(t).
Базы интегрирования Н1=20мм; Н2=30 мм.
Графики ?(s), a(s), a(?) получаю методом исключения общего переменного параметра t.
Масштабные коэффициенты диаграмм:
Масштабный коэффициент перемещения:
Масштабный коэффициент времени:
Масштабный коэффициент скоростей:
Масштабный коэффициент ускорений:
4.2 Выбор минимального радиуса кулачка
Минимальный радиус кулачка выбираю из условия выпуклости кулачка. Для этого необходимо, чтобы минимальный радиус был больше ил равен максимальному значению аналога ускорения в отрицательной части графика:
Где считаем:
4.3 Построение профиля кулачка
Построение профиля кулачка произвожу методом обращённого движения.
Масштабный коэффициент построения:
В выбранном масштабе строю окружность радиуса . Откладываю фазовый рабочий угол . Делю этот угол на 13 частей. Через точки деления провожу оси толкателя в обращённом движении. Для этого соединяю точку деления с центром вращения кулачка. Вдоль осей толкателя от окружности минимального радиуса откладываю текущие перемещения толкателя в выбранном масштабе. Через полученные точки провожу тарелки перпендикулярные осям толкателя. Кривая, огибающая все положения тарелок, является профилем кулачка.
4.4 Максимальное значение скорости и ускорения толкателя
4.4.1 Расчёт кулачка на ЭВМ
Public Sub kul()
Dim I As Integer
Dim dis1, dis2, R, a1, a2, arksin1, arksin2, BETTA, BET As Single
Dim R0, FIR, FI0, FII, SHAG, E As Single
Dim S(1 To 36) As Single
R0 = InputBox("ВВЕДИТЕ МИНИМАЛЬНЫЙ РАДИУС КУЛАЧКА RO")
FIR = InputBox("ВВЕДИТЕ РАБОЧИЙ УГОЛ КУЛАЧКА FIR")
FI0 = InputBox("ВВЕДИТЕ НАЧАЛЬНОЕ ЗНАЧЕНИЕ УГЛА ПОВОРОТА КУЛАЧКА FI0")
E = InputBox("ВВЕДИТЕ ДЕЗАКСИАЛ E")
For I = 1 To 36
S(I) = InputBox("ВВЕДИТЕ СТРОКУ ПЕРЕМЕЩЕНИЙ S(" & I & ")")
Next I
FIR = FIR * 0.0174532
SHAG = FIR / 13
FI0 = FI0 * 0.0174532
FII = FI0
For I = 1 To 36
dis1 = (R0 ^ 2 - E ^ 2) ^ (1 / 2)
dis2 = S(I) ^ 2 + R0 ^ 2 + 2 * S(I) * dis1
R = dis2 ^ (1 / 2)
a1 = E / R
a2 = E / R0
arksin1 = Atn(a1 / (1 - a1 ^ 2) ^ (1 / 2))
arksin2 = Atn(a1 / (1 - a2 ^ 2) ^ (1 / 2))
BETTA = FII + arksin1 - arksin2
BETTA = BETTA * 180 / 3.1415
Worksheets(1).Cells(I, 1) = R
Worksheets(1).Cells(I, 2) = BETTA
FII = FII + SHAG
Next I
End Sub
Таблица- Результаты расчета
52
|
20,00048
|
|
60
|
40,00097
|
|
73
|
60,00145
|
|
86
|
80,00194
|
|
94
|
100,0024
|
|
98
|
120,0029
|
|
94
|
140,0034
|
|
86
|
160,0039
|
|
73
|
180,0044
|
|
60
|
200,0048
|
|
52
|
220,0053
|
|
48
|
240,0058
|
|
48
|
260,0063
|
|
48
|
280,0068
|
|
48
|
300,0073
|
|
48
|
320,0077
|
|
48
|
340,0082
|
|
48
|
360,0087
|
|
|
Рис.8 - График построения кулачка
Список используемых источников
1 А. А. Машков, Теория механизмов и машин. - Машиностроение, г. Москва, 1969г. - 583.
2 С. Н. Кожевников, Теория механизмов и машин. - Машиностроение, г. Москва, 1969г. - 583с.
3 А. С. Кореняко, Курсовое проектирование по теории механизмов и машин. Высшая школа, Киев, 1970г. - 330с.
4 И. П. Филонов, Теория механизмов и машин и манипуляторов. - Дизайн ПРО, г. Минск, 1998г. - 428с.
5 И. И. Артоболевский, Теория механизмов и машин. - Наука, г. Москва, 1998г. - 720с.
6 К. В. Фролов, Теория механизмов и машин. - Высшая школа, г. Москва, 1998г. - 494с.
|