бесплатные рефераты

Современные оптоволоконные кабели

3.8 Классификация волоконно-оптических кабелей

В настоящее время у разных производителей, поставщиков и инсталляторов ВОК существует некоторая путаница в классификации типов волоконно-оптических кабелей. Среди многообразия попыток классифицировать ВОК заслуживает внимания классификация, основанная на опыте работы и здравом смысле, не содержащая англоязычных терминов и экзотических кабелей для локальных сетей типа трансатлантических.

Сам принцип деления волоконно-оптических кабелей по способам прокладки и назначению в случае применения в локальных сетях представляется неудачным.

Вот пример такой распространенной (Выбор и поставку волоконно-оптических кабелей для конкретного применения, как правило, мы осуществляем в индивидуальном порядке при заказе на монтажные работы. и при этом неудачной) классификации волоконно-оптических кабелей:

· кабели внешней прокладки (outdoor cables);

· кабели внутренней прокладки (indoor cables);

· кабели для шнуров.

По назначению оптические кабели делятся на линейные и внутриобъектные. Линейные, в свою очередь, подразделяются на:

· распределительные (оптическая сеть доступа);

· соединительные (соединительные линии МТС);

· междугородные (магистральные и зоновые ВОЛС).

Внутриобъектовые кабели делятся на абонентские и станционные. По условиям использования оптические кабели подразделяются на подвесные, подземные и подводные.

Подвесные кабели делятся на:

самонесущие:

· волоконно оптические кабели со встроенным несущим тросом;

· волоконно оптические кабели, армированные кевларовыми нитями;

· волоконно оптические кабели, встроенные в грозозащитный трос;

· волоконно оптические кабели, встроенные в фазный провод;

· волоконно оптические кабели, которые наматываются на грозозащитный трос или фазный провод;

Подземные кабели подразделяются на:

· волоконно оптические кабели для прокладки непосредственно в грунт и в кабельную канализацию;

· волоконно оптические кабели, облегчённой конструкции для прокладки в защитных пластиковых трубках;

· волоконно оптические кабели, для прокладки в туннелях, шахтах

Помогает ли такая классификация оптических кабелей в выборе кабеля для непосредственного применения? Практически нет.

Вот пример реальной кабельной трассы на промышленном предприятии, где нужна прокладка оптоволокна: из центра коммутации здания А по внешней стене, затем проброс по воздушной линии до здания Б, по крыше, спуск в телефонную канализацию, затем по подвалу к центру коммутации здания В.

Если придерживаться стандартной классификации, то необходимо только на одной, достаточно непротяженной (в нашем случае около 600 метров) кабельной трассе использовать 4-5 видов волоконно-оптического кабеля, соединяя их проходными муфтами. Дороговато будет, да и ненадежно (сколько лишних точек сращивания!). Можно ли в таком случае использовать один, максимум два типа оптического кабеля? Можно и нужно, если, например, не смотреть на кабель с кевларовыми нитями исключительно как на «подвесной». Если применить при этом негорючую оболочку, то такой кабель вполне сгодится и как «внутриобъектовый». Конечно, нужно учитывать еще несколько факторов. Например, если в подвале могут быть грызуны то, нужна броня из стальной ленты или проволок.

Взамен распространенной, но не эффективной классификации волоконно-оптических кабелей применительно к локально-вычислительным сетям некоторые авторы предлагают более удачную классифицируются по конструктивным особенностям и характеристикам по отношению к окружающей среде. Выбор кабеля производится индивидуально для каждой трассы, исходя из условий прокладки и эксплуатации ВОЛС.

Пример более удачной классификации волоконно-оптических кабелей следующий:

По типу оптических волокон

· с одномодовыми волокнами (SM)

· с многомодовыми волокнами (MM)

· комбинированный ( SM+MM)

По типу центрального силового элемента

· со стальным тросом

· с пластиковым тросом

· с центральной трубкой

По типу буфера в модулях

· с плотным буфером

· со свободным буфером

По типу силового элемента в оболочке

· небронированный

· с кевларовыми нитями

· бронированный стальной лентой

· бронированный проволокой

По наличию встроенного троса

· со встроенным несущим тросом

· без встроенного несущего троса

По величине допустимого растягивающего усилия

· 2,7 кН

· 4,0 кН

· 6,0 кН

· 8,0 кН

· 9,0 кН

· 12,0 кН

· 15,0 кН

· 20,0 кН

По диапазону температуры эксплуатации, град.

· от -12 до +75

· от -20 до +60

· от -40 до +60

· от -60 до +60

· от -60 до +70

По огнестойкости оболочки

· с горючей оболочкой

· с негорючей оболочкой

Примечание. Значения температуры эксплуатации и величины растягивающего усилия у разных производителей могут немного различаться.

Если учесть все указанные типы кабелей, а также число оптических волокон в кабеле, которое обычно при применении в локальных сетях составляет от 4 до 24, легко подсчитать, что число вариантов спецификаций волоконно-оптического кабеля превышает 100000.

Примеры оптических кабелей

Кабель для прокладки в грунт

Кабели с броней из стальной оцинкованной проволоки являются самыми защищенными от внешних воздействий и могут прокладываться без дополнительной защиты как в грунт, так и на дно рек

Кабель для прокладки в кабельную канализацию

Более легкие и гибкие, чем кабели для прокладки в грунт, городские кабели защищены от грызунов стальной ламинированной лентой и могут прокладываться без дополнительной защиты в кабельную канализацию

Кабель для прокладки в пластмассовый трубопровод

Самый легкий и гибкий оптический кабель для внешней прокладки. Идеален для прокладки в пластмассовых трубопроводах

Самонесущий кабель

Кабели с силовыми элементами из специальных высокопрочных нитей могут подвешиваться за внешнюю оболочку

Подвесной кабель

Легкие кабели с вынесенным силовым элементом для воздушной подвески

Основные характеристики типовых кабелей обычно сходны у различных компаний.

Волоконно-оптические кабели в броне из круглых стальных оцинкованных проволок и защитном шланге из полиэтилена - для прокладки через водные преграды, непосредственно в грунте, в кабельной канализации и других линейных сооружениях.

Волоконно-оптические кабели с оптическими волокнами в центральной трубке, в броне из круглых стальных оцинкованных проволок и защитном шланге из полиэтилена - для прокладки через водные преграды, непосредственно в грунте, в кабельной канализации и других линейных сооружениях.

Волоконно-оптические кабели в стальной ленточной гофрированной броне, защитном шланге из полиэтилена - для прокладки в кабельной канализации, трубах, блоках, коллекторах, тоннелях, на мостах и эстакадах, в станционных шахтах.

Небронированные волоконно-оптические кабели в полиэтиленовой оболочке для прокладки в пластмассовых трубах и внутри зданий.

Волоконно-оптические кабели полностью диэлектрические подвесные самонесущие для подвески на опорах воздушных линий связи и контактной сети электрифицированных железных дорог и городского транспорта

Волоконно-оптические кабели подвесные с выносным силовым элементом для подвески на столбах освещения

По типу оптических волокон кабели подразделяются на одномодовые и многомодовые.

Число оптических волокон в кабелях обычно составляет от 4 до 216.

Срок службы волоконно-оптических кабелей: как правило, не менее 25 лет.

По требованию заказчика кабели могут изготавливаться в защитной оболочке из материала, не распространяющего горения.

В производстве волоконно-оптического кабеля на российских заводах-изготовителях используется оптическое волокно ведущих зарубежных фирм.

У каждого завода-производителя свой тип обозначения и маркировки волоконно-оптических кабелей, а также имеются отличия в параметрах технических характеристик.

Для примера сравним по одной марке кабелей СП ЗАО «Москабель-Фуржикура» (марка - ОМЗКГМ), выполняемых по ТУ 16.К87-001-00 и ЗАО «Севкабель» (марка - ДАС (DAC), выполняемых по ТУ 3587-007-05755714-98.

Рекомендуемые условия прокладки

Марка кабеля

Конструктивные элементы,

образующие марку кабеля

Рекомендуемые условия прокладки

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

ОМЗКГМ

ДАС (DAC)

ЦСЭ из стеклопластикового стержня, вокруг которого скручены ОМ, содержащие до 12 ОВ каждый, кордель заполнения, внутренняя оболочка ПЭ, броня из круглых стальных оцинкованных проволок, наружная ПЭ оболочка

Диэлектрический ЦСЭ, алюмополиэтиленовая оболочка, однослойная броня из стальных проволок, наружная полиэтиленовая оболочка

В грунтах всех категорий, кроме подверженных мерзлотным деформациям, в кабельной канализации, трубах, блоках, коллекторах, тоннелях на мостах и в шахтах, через неглубокие болота и несудоходные реки

В грунтах всех групп при прокладке в открытую траншею, грунтах групп 1-3 при прокладке ножевым кабелеукладчиком (кроме грунтов, подверженным мерзлотным деформациям). В кабельной канализации, ЗПТ, блоках, по мостам и эстакадам при наличии особо высоких требований по механической устойчивости. В тоннелях и коллекторах, включая болота и несудоходные реки

Конструктивные параметры

Марка кабеля

Диаметр кабеля, мм

Масса кабеля, кг/км

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

ОМЗКГМ

ДАС (DAC)

12,9…20,8

16,5…26,0

258…859

471…1011

Электрические параметры

Параметр

Ед. измерения

Значение

Объект

нормирования

Марка ОК

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

Электрическое сопротивление изоляции постоянному току

МОм х км

2000

2000

Между металлическими элементами (броней) и землей (водой)

ОМЗКГМ

ДАС (DAC)

Испытательный импульсный ток длительностью 60 сек

кА

105

105

Металлические элементы

Испытательное напряжение наружной оболочки, в течение 5 с:

- переменный ток частотой 50 Гц;

- постоянный ток

кВ

10

20

10

20

Между соединенными вместе металлическими элементами и землей (водой).

То же.

Механические параметры

Параметр

Ед. измерения

Значение

Марка ОК

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

Стойкость к статическим растягивающим усилиям, не менее

кН

7,0

7,0

ОМЗКГМ

ДАС (DAC)

Стойкость к раздавливающим усилиям, не менее

кН

кН/см

0,6

1,0

Стойкость к динамическим изгибам

20 циклов изгибов на угол +90є с радиусом, равным 20 номинальных диаметров кабеля при температуре - 10єС

Стойкость к перемоткам

10 перемоток с барабана на барабан с радиусом шейки, равным 20 номинальным диаметрам ОК

Стойкость к осевому кручению

10 циклов осевых кручений на угол +360є на длине (4+0,2)м при нормальной температуре окружающей среды

Стойкость к однократному удару

Дж

50

20

Стойкость к вибрационной нагрузке

м/сІ

При ускорении до 40 в диапазоне частот 10…200 Гц

ОМЗКГМ

ДАС (DAC)

Стойкость к продольной водопроницаемости

м

В соответствии с ГОСТ Р МЭК 794-1 при избыточном давлении 9,8 кПа

Климатические параметры

Параметр

Ед. измерения

Значение

Марка ОК

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

«Москабель-

Фуржикура»

«Севкабель»

Рабочий диапазон температур

єС

-40…+50

-60…+70

ОМЗКГМ

ДАС (DAC)

Стойкость к циклической смене температур

єС

В диапазоне от низкой до высокой рабочих температур

Стойкость к воздействию плесневых грибов, росы, атмосферных осадков, инея, соляного тумана, солнечного излучения

В соответствии с ГОСТ 20.57.406

Если говорить в отношении предпочтения того или иного производителя («Москабель-Фуржикура» или «Севкабель»), исходя из сравнительных характеристик рассмотренных однотипных марок кабелей и принимая во внимание отличия по параметрам, отмеченным синим шрифтом, можно считать, что ввиду малых отличий, решающим фактором при выборе может быть скорее цена.

IV. ПОМЕХИ

Понятие, которое имеет решающее значение для функционирования каждой системы связи,- помехи.

Насколько не одинаковы неисправности системы из-за потерь в сети питания или отказов каких-либо элементов, встречающиеся в каждом приборе или устройстве, настолько же не одинаковы помехи, вызванные электромагнитными полями. Это поля, создаваемые плохо экранированными электродвигателями, радиоизлучениями автомобилей, часто вызывающими сильные помехи в радио или телевизионной аппаратуре, и т.п.

В условиях отсутствия шумов разработчик мог бы безгранично увеличивать длину усилительного участка. Требуется только соответственно увеличивать мощность сигнала, поступающего на вход приемника. Но шум существует и уменьшает чувствительность каждого приемника и возможности каждого усилителя. Если мощность полезного сигнала на входе меньше мощности помех, то сигнал перекрывается ею и не может быть выделен приемным устройством или усилен. Даже когда сигнал и помехи имеют почти одинаковую мощность, шум становится довольно значительным. Причины и источники шумна разнообразны. К ним относятся корпускулярные шумы электрического тока (дробовой шум), температурные шумовые процессы, шумы квантования световых пучков. Источник света сам вносит в систему шумовые составляющие, добавляют их также фотодиод и оконечный электронный усилитель. Если используется лавинный фотодиод, то возникают дополнительные шумовые составляющие из-за эффекта умножения в этом элементе.

Если рассмотреть электрический сигнал на выходе фотоприемника, то можно установить, что различные шумовые источники проявляют себя в нем тем или иным способом. Вместо чистой формы сигнала, которой модулировалась выходная мощность светового сигнала передатчика, на вход приемника поступает сигнал, амплитуда которого случайным образом более или менее меняется вблизи данного значения. Средние значения соответствуют истинной форме переданного сигнала, но мгновенные значения отклоняются от заданного вследствие влияния помех. Первоначальный сигнал можно лишь приблизительно выделить из суммы полезного и мешающего сигналов.

4.1 Длина оптической линии

Основная задача - обеспечение того, чтобы посланный сигнал с достаточной для соответствующей цели точно воспроизводился в приемнике, т. е. разработчик будет пытаться по возможности приблизиться к первоначальной (правильной) форме сигнала путем получения среднего значения по возможно большому количеству мгновенных значений сигнала, искаженного помехой. Для этого служат, различного рода электрические фильтры. Конечно, для усреднения амплитуды сигнала можно использовать только такое количество мгновенных значений сигнала, чтобы сами полезные изменения сигнала не были сглажены и не оказались из-за этого потерянными. То, что остается после этой фильтрации, более не уничтожается. С этим разработчик системы должен считаться и, например, выбирать длину передающей линии настолько короткой, чтобы мощность сигнала не оказалась близкой к мощности шумового фона.

Для инженера связи из этой модели формирования среднего значения следует важный вывод: качество передачи сигнала при одинаковом уровне помех тем лучше, чем медленнее изменяется сигнал (так как тем большими могут быть интервалы времени усреднения и тем точнее получаемый результат) и чем меньше необходимая для данной цели ширина полосы частот (пропускная способность).

Из этих рассуждений ясно, что для фотоприемника имеется нижняя граница мощности принимаемого сигнала. На этой границе мощность сигнала в определенное число раз больше суммарной мощности шумов, которые появляются в приемнике. Этот коэффициент обозначается как отношение сигнал/шум и выражается в децибелах. Если необходимо передать двоичные сигналы, то достаточно, например, отношения сигнал/шум (в электрическом сигнале), равного 18 Дб. Это означает, что полезная мощность приблизительно в 63 раза больше, чем наложенная шумовая мощность, что позволяет осуществить достаточно достоверное распознавание одиночного импульса. Если, напротив, необходимо передать непрерывные сигналы, которые реагируют на помехи гораздо чувствительнее, чем двоичные, то отношение сигнал/шум должно быть выше и в зависимости от рода сигнала и требуемого его количества должно достигать 30 - 60 дБ.

По крайней мере, существуют два других фактора, которые, как и ослабление, ограничивают длину усилительного участка: материальная дисперсия и модовая дисперсия. С увеличением длины усилительного участка они вызывают уширение посланного импульса и при этом тем большее, чем выше пропускная способность линии. Так как модовая дисперсия зависит от конструкции световода (для световода с градиентным профилем показателя преломления она гораздо меньше, чем при ступенчатом показателе), то тип применяемого световода при заданной пропускной способности линии, пожалуй, гораздо сильнее ограничивает дальность действия, чем ослабление. Таким же образом, ограничивая длину линии световода с малой модовой дисперсией и малым ослаблением, можно влиять на ширину спектра источника света (например, использовав светоизлучающий диод).

Итак, на вопрос о дальности действия оптической связи однозначного ответа может не быть, так как имеется ряд факторов, влияние которых необходимо учитывать при проектировании.

4.2 Сращивание отдельных участков кабелей

Особый класс образуют кабели, встроенные в грозотрос.

Отдельно рассмотрим способы сращивания строительных длин кабелей.

Сращивание строительных длин оптических кабелей производится с использованием кабельных муфт специальной конструкции. Эти муфты имеют два или более кабельных ввода, приспособления для крепления силовых элементов кабелей и одну или несколько сплайс-пластин. Сплайс-пластина - это конструкция для укладки и закрепления сращиваемых волокон разных кабелей.

После того, как оптический кабель проложен, необходимо соединить его с приемо-передающей аппаратурой. Сделать это можно с помощью оптических коннекторов (соединителей). В системах связи используются коннекторы многих видов.

Конструкция фиксатора, например, фирмы "Push-Pull" обеспечивает подключение коннектора к розетке наиболее простым образом - на защелке. Защелка-фиксатор обеспечивает надежное соединение, при этом не нужно вращать накидную гайку. Важное преимущество разъемов с фиксацией Push-Pull - это высокая плотность монтажа оптических соединителей на распределительных и кроссовых панелях и удобство подключения.

4.3 Новейшие электронные компоненты систем оптической связи

В последние годы наряду с когерентными системами связи развивается альтернативное направление: солитоновые системы связи. Солитон - это световой импульс с необычными свойствами: он сохраняет свою форму и теоретически может распространяться по "идеальному" световоду бесконечно далеко. Солитоны являются идеальными световыми импульсами для связи. Длительность солитона составляет примерно 10 трилионных долей секунды (10 пс). Солитоновые системы, в которых отдельный бит информации кодируется наличием или отсутствием солитона, могут иметь пропускную способность не менее 5 Гбит/с на расстоянии 10 000 км.

Такую систему связи предполагается использовать на уже построенной трансатлантической линии ТАТ-8. Для этого придется поднять подводный ВОК, демонтировать все регенераторы и срастить все волокна напрямую. В результате на подводной магистрали не будет ни одного промежуточного регенератора.

Перспективными волноводами можно считать также и созданные совсем недавно дырчатые волноводы, т.е. волноводы с оболочкой, представляющей собой двумерный набор плотно упакованных и вытянутых при высокой температуре полых стеклянных волокон. Их можно считать одним из наиболее значительных достижений оптических технологий за последние пять лет. Замечательные свойства этих волноводов детально изучаются, область их практических приложений неуклонно расширяется, стремительно растет число научных групп, использующих дырчатые волноводы в своих исследованиях, в частности для абонентских сетей.

ЗАКЛЮЧЕНИЕ

Еще в середине 70-х годов существовала уверенность в том, что эта часть сети, состоящая из отдельных проводников, должна остаться металлической из экономических соображений. Впоследствии это мнение изменилось.

Около 70% меди, расходуемой на кабели связи, приходится на абонентские сети, хотя диаметры проводников выбраны настолько малыми, насколько это возможно. Если бы в будущем отрезки линий, передающих сигналы, выполнялись на оптических элементах, то можно было бы сэкономить только лишь треть затрат на медь, а абонентские сети необходимо было бы опять строить в каждом квартале новостроек.

Дальнейшим важным направлением являются постоянно растущие информационные потоки в промышленности, хозяйстве, а также в быту.

Радио- и телевизионная связь станут в ближайшем будущем встречаться в каждом доме, и необходимость устройства абонентских вводов во многих странах превышает их экономические возможности. Только в учреждения и на заводы в ближайшие годы придут новые службы, польза и рентабельность которых сегодня общепризнанны: телекопирование, конторский телетайп, электронная почта, передача данных в самом широком смысле слова, телеметрия, телеуправление и мониторное оборудование для различных технических устройств. Для индивидуальных абонентов техника также движется вперед. Уже испытываются известные во многих странах мира способы, с помощью которых абонент сможет выбрать тексты, таблицы, диаграммы и воспроизвести их на собственном экране.

Абонентские линии, которые мы сегодня прокладываем, должны быть подготовлены для многих потребностей последующего десятилетия. Нынешнюю систему электрической связи можно использовать только в качестве речевого канала с небольшой полосой пропускания. Такая связь пригодна для конторского телетайпа, а также для передачи данных. Уже при телекопировании необходимо длительное время копирования - в лучшем случае свыше одной минуты на каждую страницу формата АЧ, и каждое повышение скорости требует увеличения полосы пропускания. До конца 80-х годов - таков прогноз британского ведомства связи - в Англии до 50% почты должно передаваться электронным образом.

Но окончательно необходимо будет отказаться от сегодняшнего абонентского симметричного кабеля с медными проводниками, если потребуется хотя бы одно-единственное движущееся изображение. Тогда будет необходим дорогой коаксиальный кабель или световод.

Такой прогноз развития в будущем является основой, которую учитывают при создании широкополосной связи для каждой квартиры, по крайней мере, с близлежащей коммутационной станцией. Как должна выглядеть техника оптической связи будущего, в частности упомянутая сеть оптической связи, какие и сколько различных сигналов должно быть в этой многоцелевой абонентской сети и как они должны будут передаваться, никто еще сегодня конкретно и окончательно сказать не может. Хотя некоторые рабочие положения сформулированы. Сообразно с ними телефонная связь (разговор и вызывной сигнал) должна осуществляться в обоих направлениях, а кроме того, должен передаваться и телевизионный сигнал. В соответствии с этим каждый абонент получает отдельную оптическую широкополосную линию, к которой, прежде всего, подключен его телефон и затем, возможно, видеотелефон и другие высокоскоростные устройства.

Ряд вопросов при этом останется открытым. Один из них - энергоснабжение аппарата абонента. Телефон, питаемый сегодня через сигнальные проводники станционного источника питания, в дальнейшем не будет иметь электрической связи с коммутационной станцией. Таким образом он должен будет получать энергию от местной силовой сети. К этой идее привыкли. Обычно электрическая передающая техника будущего ставит те же требования автономного электропитания, правда, по другим причинам. При этом электрическая развязка (абонентов и коммутационной станции), которая обусловлена применением световодной техники, окажется целесообразной с экономической точки зрения.

Оптическая абонентская сеть, широкополосный аппарат абонента в каждой квартире более не являются утопией.

Волоконно-оптические линии связи в настоящее время считается самой совершенной физической средой для передачи информации.

ВОЛС целесообразно использовать при объединении локальных сетей в разных зданиях, в многоэтажных и протяженных зданиях, а также в сетях, где предъявляются особо высокие требования к информационной безопасности и защите от электромагнитных помех.

Волоконная оптика и ВОК обладают рядом безусловных преимуществ.

1. Широкополосность ВОЛС оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (Fo=10 14 Гц). Это означает, что по волоконно-оптической линии связи (ВОЛС) можно передавать информацию со скоростью порядка 10^12 бит/с.

2. Очень малое затухание ВОЛС светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи (ВОЛС) длиной до 100 км и более без регенерации сигналов.

3. Устойчивость ВОЛС к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки и т.д.) и погодных условий.

4. Защита волоконно-оптических линий связи (ВОЛС) от несанкционированного доступа - информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим способом.

5. Электробезопасность волоконно-оптических линий связи (ВОЛС). Из-за отсутствия искрообразования оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.

6. Невысокая стоимость волоконно-оптических линий связи (ВОЛС) - волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди.

7. Долговечность ВОЛС - срок службы волоконно-оптических линий связи составляет не менее 25 лет.

К недостаткам можно отнести, пожалуй, только

Относительно высокую стоимость активных элементов ВОЛС, преобразующих электрические сигналы в свет и свет в электрические сигналы.

Относительно высокая стоимость сварки оптических волокон - для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

СПИСОК ЛИТЕРАТУРЫ:

1. Глазер В. "Световодная техника" М. Энегроатомиздат 1985 г.

2. Савельев И. В. "Курс общей физики" М. Наука 1978, 1982 г.

3. Оптические кабели связи российского производства. Справочник- М.: Эко-трэнд, 2003.-288 с.

Array

Страницы: 1, 2, 3


© 2010 РЕФЕРАТЫ