бесплатные рефераты

Математические модели в программе логического проектирования

 

 

4.2 Цифровой компаратор 2-х разрядного кода

 Математические модели в программе логического проектирования

а)

 Математические модели в программе логического проектирования

б)

Рис.4.2 Схема цифрового компаратора ко 2-му варианту

На рис.4.2(а,б) изображена схема цифрового компаратора. Входными кодами являются 2-х разрядные коды А и В (А1,А2 и В1, В2 соответственно). Реализуемая им логическая функция имеет вид:

Y=1   если   A>B

Схема реализована в двух доступных в логическом конверторе базисах: рис.4.2(а) И, ИЛИ, НЕ и рис.4.2(б) И-НЕ. Для контроля правильности работы компаратора в обе схемы введены генератор слов и логический анализатор. Генератор слов подключен на входах схем и используется для генерации всех возможных комбинаций кодов А и В (2 разряда код А и 2 код В всего 4, следовательно 24=16 - генерируется 16 различных слов). На выходах схем подключен логический анализатор причём его первые 4 канала включены параллельно 4 используемым выходам генератора слов. Это сделано для получения более наглядной картинки на экране панели управления логического анализатора(см рис.4.3)

 Математические модели в программе логического проектирования

Рис.4.3 Временная диаграмма работы цифрового компаратора

Выход схемы подключен к 6-му каналу анализатора. Таким образом на экране одновременно отображаются входные и выходные сигналы, что позволяет получить полную временную диаграмму работы устройства(вход и выход на экране точно синхронизированы во времени).Наименование каналов сверху вниз: А1, А2, В1, В2 и Y.

 

 

 

 

 

 

 

 

 

 

4.3 Дешифратор 4-х разрядного адреса

 Математические модели в программе логического проектирования а)

 Математические модели в программе логического проектирования б)

Рис.4.4 Схема дешифратора адреса к 3-му варианту.

На рис.4.4(а,б) показана схема дешифратора адреса. Причём на рис.4.4(а) схема синтезирована в базисе И, ИЛИ, НЕ, а на рис.4.4(б) в базисе И-НЕ. Дешифрируемый адрес 01112 или 710. Подключив на вход схем генератор слов, а на выход логический анализатор(точно также как и в предыдущей схеме) легко получить временные диаграммы работы устройства см.рис.4.5

 Математические модели в программе логического проектирования

Рис.4.5 Временные диаграммы дешифратора адреса

С полученных временных диаграмм легко сосчитать дешифрованный адрес. Кроме того на полученной диаграмме выхода схемы можно наблюдать паразитный выброс - результат гонок возникающих с приходом кода 0100 на первом элементе И см.рис.4.4(а). Это вполне объяснимо поскольку разряды дешифрируемого сигнала проходят разное количество цифровых элементов. Конечно у реальных дешифраторов обязательно используется строб-импульс или тактирование.

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Схема контроля чётности

 Математические модели в программе логического проектирования

Рис.4.6 Схема для получения таблицы истинности бита чётности с помощью логического конвертора

Схема на рис.4.6 показывает способ подключения логического конвертора. При таком подключении и задании соответствующего режима работы цифровой конвертор составляет таблицу истинности для подключенной схемы. Происходит это следующим образом:

На своих выводах подключенных ко входам схемы конвертор перебирает все возможные сочетания 0 и 1. В данном случае подключено 4 входа следовательно это будет 24=16 комбинаций(4-х разрядных слов). С выхода схемы конвертор считывает реакцию схемы на каждое слово и записывает её в столбец Out отображённый на панели управления вместе с перебираемым входным кодом. Отклик схемы на каждое слово записывается в той же строке, где находится и само посланное слово.

Таблица истинности для приведённой на рис.4.6 схемы контроля чётности будет иметь вид см.рис.4.7.

 

 

 

 

 

 

 Математические модели в программе логического проектирования

Рис.4.7 Таблица истинности схемы контроля чётности на панели логического конвертора.

Следующий этап - синтез схемы в базисе доступном на логическом конверторе.

 Математические модели в программе логического проектирования

Рис.4.8 Схема контроля чётности синтезированная в базисе И, ИЛИ, НЕ

Представленная на рис.4.8 схема осуществляет контроль чётности поступающих на её входы 4-х разрядных слов. В случае если количество единиц чётное на выходе Y формируется 1 если нечётное 0. В этом можно убедится подключив генератор слов и логический анализатор как показано на схеме рис.4.8. Временные диаграммы полученные на логическом анализаторе имеют вид см.рис.4.9

 Математические модели в программе логического проектирования

Рис.4.9 Временные диаграммы схемы контроля чётности

Все представленные здесь логические схемы реализованы на идеальных цифровых ключах из библиотеки Electronics Workbench. При желании их можно легко перевести в реальные серии микросхем. Библиотека Electronics Workbench предоставляет большие возможности для этого см.рис.4.10

 

 Математические модели в программе логического проектирования

Рис.4.10 Библиотека реальных компонентов электрических схем

Библиотека предоставляет широчайший набор цифровых компонентов ТТЛШ и КМОП технологий (ТТЛ логика морально устарела и поэтому не представлена).

 

5. Методические указания

 

к лабораторной работе.

“Логическое проектирование комбинационных схем.”

 

Цель работы: Изучить способы проектирования комбинационных схем с использованием с использованием логического конвертора моделирующего пакета программ Electronics Workbench.

 

5.1  Описание лабораторной установки

Лабораторная установка представляет из себя виртуальную электронную лабораторию Electronics Workbench. Файлы содержащие исследуемые схемы находятся в каталоге Labs. Сохранение, полученных в ходе лабораторной работы схем, производить в каталоге Custom.

Для того чтобы сохранить схему в требуемом каталоге следует воспользоваться командой Save as из меню File. После выбора этой команды появится панель см.рис.5.1.

 Математические модели в программе логического проектирования

Рис.5.1 Панель для сохранения результатов.

Затем навести стрелку на каталог(папку) Custom дважды нажав левую кнопку “мыши” открыть каталог(папку). После этого установить курсор с помощью мыши в окошко под надписью Имя файла и ввести туда имя, под которым вы желаете сохранить свою схему, следя за тем чтобы сохранить расширение са.4(для схем), и “нажать” с помощью “мыши” кнопку ОК.

 

5.2 Предварительное расчётное задание.

Для 1-го варианта: По заданной преподавателем таблице истинности составить уравнение, минимизировать его с помощью карт Карно и построить схемы:

а) в базисе И, ИЛИ, НЕ;

б) в базисе И-НЕ.

Для 2-го варианта: Записать логическое уравнение компаратора, минимизировать, разработать логическую схему в базисе И-НЕ, ИЛИ-НЕ

 

5.3 Рабочее задание

1-й вариант: При помощи логического конвертора по заданной таблице истинности (той же что и в предварительном задании) составить уравнение, минимизировать его и построить схемы в базисах И, ИЛИ, НЕ и И-НЕ:

- открыть панель управления логического конвертора и занести туда таблицу истинности;

- пользуясь кнопкой   Математические модели в программе логического проектирования  перевести её в уравнение и минимизировать его;

- сравнить полученный результат с уравнением полученным вручную, с помощью карт Карно;

- используя кнопки   Математические модели в программе логического проектирования  и  построить схемы в различных базисах, сохранить их в каталоге Custom и сравнить их с полученными вручную.

2-й вариант: Разработка цифрового компаратора(схема сравнения кодов) для 2-х разрядного кода:

а) имеются 2 входа кода “А”- А1, А2 и 2 входа кода “В”- В1,В2. Сигнал на выходе высокий, если код А равен коду В, и низкий если коды не совпадают;

б) сигнал на выходе высокий, если код А больше кода В и низкий в остальных случаях;

в) сигнал на выходе высокий, если код А меньше кода В и низкий в остальных случаях.

Для всех случаев создать таблицы истинности и занести их в логический конвертор, конвертировать в уравнение, минимизировать и построить схему в базисе И-НЕ(NAND). Уравнения и соответствующие им таблицы истинности занести в конспект.

Каждую созданную схему сохранить в текущем каталоге Custom и зарисовать в конспект рядом с соответствующими таблицами истинности. Сравнить с домашней разработкой. Затем по очереди вызывая схемы, проверить их с помощью генератора слов и логического анализатора:

- ко входам исследуемой схемы подключить 4 выхода генератора слов и в соответствующих входам столбцам набрать все возможные сочетания 0 и 1 (2 столбца- код А, 2 столбца- код В);

- к выходу схемы подключить логический анализатор(любой канал);

- синхронизация генератора слов внутренняя, логического анализатора тоже;

- для удобства просмотра, частоты внутренних генераторов выставить таким образом, чтобы 1 импульс приходился на одно деление (например частота генератора 1 kHz, а у анализатора 1 ms/div);

- запустить генератор слов в пошаговом режиме, снимать показания логического анализатора и сравнивать их с исходной таблицей истинности.

Для схемы равенства кодов:

- записать в двоичном коде слово на котором возникают гонки, а также предшествующее ему;

- определить на каких элементах схемы возникают гонки.

3-й вариант: Синтезировать дешифратор адреса для заданного преподавателем 4-х разрядного адреса. Проверить работу при помощи  логического анализатора и генератора слов.

- составить таблицу истинности для дешифратора адреса и занести её в логический конвертор;

- конвертировать в уравнение;

- синтезировать схемы в базисах И, ИЛИ, НЕ и ИЛИ-НЕ(NAND), сохранить схемы в текущем каталоге;

- ко входу схемы подключить первые 4 вывода генератора слов;

- загрузить в генератор слов последовательность слов кнопкой Load, файл Parit;

- подключить на выход схемы логический анализатор;

- генератор слов запустить в режиме Burst;

- полученные данные сравнить с исходной таблицей истинности;

- записать в двоичном коде слово на котором возникают гонки, а также предшествующее ему;

- определить на каких элементах схемы возникают гонки;

Таблицу истинности, уравнение и схемы занести в конспект.

4-й вариант: Синтез схемы контроля чётности 4-х разрядных слов. Из методических указаний (см. Рис.5.2 перенести на рабочее поле Electronics Workbench схему контроля чётности вручную. Используя логический конвертор составить таблицу истинности для схемы. Затем схему стереть и по таблице истинности составить логическое уравнение(с помощью конвертора), синтезировать схемы в двух доступных базисах, проверить при помощи генератора слов и логического анализатора.

 Математические модели в программе логического проектирования

Рис. 5.2 Схема контроля чётности.

- ко входам перенесённой схемы подключить первые четыре вывода логического конвертора, выход схемы подключить к выводу конвертора, находящемуся вверху справа(расположен обособленно);

- на панели управления логического конвертора “открыть” четыре первые столбца- A, B, C, D;

- “нажать” на кнопку  Математические модели в программе логического проектирования , в столбце Out появится комбинация 0 и 1, что вместе со столбцами A, B, C и D даст таблицу истинности для исследуемой схемы

- выделить всю схему, а затем стереть её используя меню Edit;

- по имеющейся таблице истинности получаем уравнение и синтезируем схему(см. предыдущие варианты), полученные схемы сохранить в текущем каталоге Custom и вызывая по очереди проверить генератором слов(Load файл Parit) и логическим анализатором(см. предыдущие варианты);

- полученную таблицу истинности и уравнение занести в конспект.

 

5.4 Контрольные вопросы

1. Назовите способы задания логических функций.

2. Что такое совершенная дизъюнктивная и совершенная конъюнктивная и нормальные формы ?

3. Назовите основные способы минимизации булевых выражений.

4. Что такое- функционально полный базис ?

5. Объясните почему так сильно различаются по количеству логических элементов, схемы контроля чётности, синтезированные в различных базисах (см.4-й вариант) ?

6. Что такое гонки в цифровой схеме и каким образом можно избавится от них  ?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Методические рекомендации по быстрому знакомству с программой

 

6.1. Рàáîòà ñ HELP, проблема языка и русификация

Electronics Workbench èìååò îáøèðíûé Help âåñüìà óäîáíûé è äåéñòâèòåëüíî ïîëåçíûé â ðàáîòå. Îí èñïîëüçóåò ñòàíäàðòíóþ ïàíåëü Help äëÿ Windows è ìîæåò èñïîëüçîâàòüñÿ êàê ïî îñíîâíûì ðàçäåëàì - Help, òàê è ïî èíäåêñó - Help Index...(âñ¸ ÷òî ïðåäîñòàâëÿåò Electronics Workbench ðàçëîæåíî â àëôàâèòíîì ïîðÿäêå). Íî âñ¸ ýòî ê ñîæàëåíèþ íà àíãëèéñêîì ÿçûêå. Ïðàâäà ñ ïîìîùüþ ìåíþ Ðåäàêòèðîâàíèå â íåãî ìîæíî âñòàâëÿòü àííîòàöèè íà ðóññêîì ÿçûêå, êóäà ìîæíî ïîìåñòèòü ïåðåâîä.

 

6.2 Об окне Description

Ñëåäóåò óïîìÿíóòü, ÷òî îêíî Description, ïðåäíàçíà÷åííîå äëÿ ñîñòàâëåíèÿ êîììåíòàðèåâ ê ñõåìàì èìååò ñóùåñòâåííûé íåäîñòàòîê - îíî ïîääåðæèâàåò òîëüêî àíãëèéñêèå øðèôòû.

Òåêñò â îêíå Windows äîñòóïåí äëÿ êîïèðîâàíèÿ ÷åðåç áóôåð îáìåíà â ëþáîå ïðèëîæåíèå Windows. Äëÿ ýòîãî íóæíî ëèøü âûäåëèòü åãî “ìûøüþ”, êàê  â Word, è çàòåì âîñïîëüçîâàòüñÿ êîìàíäîé Cut èëè Copy èç ìåíþ Edit. Âîçìîæíî òàêæå è êîïèðîâàíèå òåêñòà èç ïðèëîæåíèé Windows â Description - êîìàíäîé Paste, íî ïðè ýòîì òåðÿåòñÿ ôîðìàòèðîâàíèå òåêñòà(åñëè îíî áûëî).

 

 

 

 

 

 

6.3. Âîçìîæíîñòè ïîëó÷åíèÿ òâåðäîé êîïèè è ïîäãîòîâêè îò÷åòà

Очень широкие возможности предоставляет Electronics Workbench ïðè ñîçäàíèè îò÷¸òîâ è îïèñàíèé.

Êîìàíäà Print - î÷åíü óäîáíà â ýòîì îòíîøåíèè ïîñêîëüêó ïîçâîëÿåò ðàñïå÷àòàòü íà ïðèíòåðå(èñïîëüçóåòñÿ äèñïåò÷åð ïå÷àòè Windows ñ óñòàíîâëåííûì â í¸ì ïðèíòåðîì) ïðàêòè÷åñêè âñå ðåçóëüòàòû ìîäåëèðîâàíèÿ ñõåìû ñì.ðèñ.6.1.

 Математические модели в программе логического проектирования

Ðèñ.6.1 Ïàíåëü äëÿ ðàñïå÷àòêè ðåçóëüòàòîâ ìîäåëèðîâàíèÿ Electronics Workbench.

Êðîìå òîãî ïîñðåäñòâîì áóôåðà îáìåíà Electronics Workbench ñîâìåùàåòñÿ ñî âñåìè ñòàíäàðòíûìè ïðèëîæåíèÿìè Windows. Âñ¸ ÷òî èçîáðàæåíî íà ýêðàíå ëåãêî ïåðåíîñèòñÿ íàïðèìåð â Word èëè â Paintbrush(äëÿ ðåäàêòèðîâàíèÿ). Ðàñïîçíà¸òñÿ âñ¸ ÷òî áûëî ïåðåíåñåíî êàê ðèñóíîê(îáðàç) çà èñêëþ÷åíèåì òåêñòà èç Description è Help.

 

6.4 Демонстрационная версия

С целью скорейшего приобретения студентом навыков работы с приборами контроля цифровых схем - генератором слов и логическим конвертором предлагается, ввести в лабораторную работу демонстрационную схему с уже подключенными приборами (см. рис.6.2)

 Математические модели в программе логического проектирования

Рис.6.2 Демонстрационная схема

Схема реализует функцию “суммирование по модулю 2” на 3 входа. Она находится в папке Example под именем Practic, там же расположен файл с последовательностью слов для генератора слов c таким же именем (расширение DP).

Схема позволяет ознакомится с подключением приборов и с их управлением. С её помощью можно ознакомится с различными режимами работы как генератора слов так и логического анализатора буквально методом проб и ошибок поскольку сломать ничего невозможно, а если вдруг всё окончательно запуталось можно вернуться к первоначальному виду схемы загрузив её заново командой Revert to Saved из меню File.

Методические указания для ознакомления с генератором слов и логическим анализатором:

1) Снять временные диаграммы работы схемы в разных режимах работы генератора слов (логический анализатор в режиме Burst):

а) в пошаговом (Step);

б) в режиме посылки последовательности импульсов (Burst);

в) в циклическом режиме.

Страницы: 1, 2, 3, 4, 5, 6, 7


© 2010 РЕФЕРАТЫ