бесплатные рефераты

Теория экономического прогнозирования

{Пβjk} – множество операторов прогнозирования второго уровня;

{Пαijk} – множество операторов прогнозирования третьего уровня;

i,j,k – число параметров, описывающих систему на каждом уровне.

Таким образом, описание рассматриваемой трехуровневой системы реализуется  в виде иерархии численных параметров системы и ограничений на области их области их возможных значений.

В рассматриваемой формальной постановке исходная информация о состоянии рассматриваемого объекта (I) отделена от механизма его функ­ционирования (П). Структура этой информации может быть представлена тремя основными составляющими:

- параметры состояния системы, поддающиеся целенаправленному изменению;

Iну - параметры, эволюция которых не поддается управлению, т.е. не зависит от воли людей;

Iвн - параметры внешней среды, не поддающиеся изменению в рам­ках рассматриваемой системы.

В результате получаем

(1.6)

I= {Iу,Iну,Iвн}.

Для прогнозных задач остаточную неопределенность будущего со­стояния исследуемого объекта определяют 1ну и 1вн.

Поэтому для принятия управленческих решений на основе прогноза должен быть определен перечень возможных последствий при определен­ных, возможных в будущем условиях 1ну и 1вн. Это означает, что приня­тию решения должен предшествовать выбор условий, которые, по мнению лица, принимающего решения, наиболее вероятны.

Другим источником неопределенности является неясность и неодно­значность целей функционирования и развития системы. В процессе про­гнозирования цель должна быть сформулирована достаточно конкретно. Задача прогноза - определить границу области реальных (достижимых) це­лей в различных условиях будущего развития системы (при различных Iну и Iвн)[37].

Таким образом, прогнозирование связано с неопределенностью в оценке последствий каждого управленческого решения. Эта неопределен­ность связана также с тем, что за период с момента получения информации об объекте управления (хозяйственной системе) до момента исполнения управляющего воздействия на систему могут происходить:

• старение информации;

• изменение функций, структуры, параметров объекта прогнозирова­ния;

• изменение функций, структуры, параметров внешней среды.

При разработке прогнозов следует иметь в виду, что каждое управ­ленческое решение по своей природе является прогнозным. Эффектив­ность принимаемых решений может быть обеспечена системным единст­вом процессов прогнозирования и планирования, осуществляемых в определенной последовательности: «поисковый прогноз - нормативный про­гноз- стратегическое планирование — бизнес-планирование - перспектив­ное планирование - текущее планирование - оперативное планирование» [9].

Соблюдение системного единства и последовательности этапов по­зволяет раскрывать неопределенности, связанные с внешней средой и со­стоянием самого объекта прогнозирования. Игнорирование отдельных элементов данной системы может привести: к снижению точности прогно­зирования-планирования и эффективности принимаемых управленческих решений; к повышению риска при принятии решений.

Таким образом, квалифицированный, профессионально подготов­ленный экономист-менеджер должен обладать системными знаниями о науке прогнозирования, что поможет ему при разработке обоснованных управленческих решений.

1.3. Инерционность экономических процессов как основа экономического прогнозирования

Принципиальная возможность экономического прогнозирования основывается на закономерном (детерминированном) характере изменения различных показателей и на инерционности технико-экономических про­цессов [39].

Инерционность в развитии хозяйственных структур проявляется двояким образом:

• как инерционность взаимосвязей, т.е. как сохранение в основных чертах механизма формирования явления (инерционность первого рода);

• как инерционность в развитии отдельных сторон процессов, т.е. как некоторая степень сохранения их характера (темпов, направления, ко­леблемости основных количественных показателей) на протяжении срав­нительно длинных хронологических отрезков (инерционность второго ро-да).

Степень инерционности зависит от такого фактора, как размер или масштаб изучаемой хозяйственной структуры или процесса. Если рассмат­ривать производственную систему, то чем ниже уровень в иерархии «предприятие — отрасль - народное хозяйство», тем менее инерционными оказываются соответствующие характеристики.

Последнее обстоятельство можно объяснить тем, что влияние от­дельного фактора (например, внедрение инноваций) на низовом уровне часто оказывается доминирующим. На макроуровне показатели более ус­тойчивы, поскольку на их значение оказывает воздействие уже гораздо большее число факторов. Изменение действия ряда из них (иногда оказы­вающих противоположное влияние) приводит к меньшей потере инерци­онности, чем на микроуровне.

Опыт свидетельствует о том, что чем «моложе» изучаемая система (хозяйственная структура, экономическое явление, процесс) и, соответственно, чем меньше имелось времени для формирования более или менее

устойчивых взаимосвязей и основных тенденций в ее развитии, тем мень­шей инерционностью она обладает.

Наличие инерционности не означает, что экономическая система в своем развитии будет жестко следовать уже наметившейся тенденции. Раз­личные факторы будут в большей или меньшей степени воздействовать на систему, приводя к отклонениям от тенденции.

Прогнозирование инерционных систем осуществляется через анализ области возможного, то есть того, что возможно в будущем. Теория про­гнозирования рассматривает понятие возможности как форму детермина­ции. Различают два типа детерминации [37]:

внутренняя детерминация, свойственная целостным сложным сис­темам, обладающим внутренним источником саморазвития (социальные системы);

внешняя детерминация, предполагающая выделение устойчивых, относительно неизменных отношений, когда исследуемая система рассматривается как нечто постоянное, устойчивое. Это более простая форма детерминации.

Принцип внешней детерминации предполагает проверку изучаемой системы на устойчивость. Это означает, что не любая комбинация свойств и состояний элементов, образующих целостную социально- экономиче­скую систему, возможна в будущем, а только та, которая образует опреде­ленную устойчивую форму, отражающую сущность этой системы.

Критерий устойчивости позволяет проводить отбор только тех вари­антов будущего, которые могут реально существовать.

Для определения типа инерционности экономической системы необ­ходимо выяснить, присутствует ли в динамических рядах технико-экономических показателей тенденция (тренд). Выяснение типа инерци­онности позволяет в дальнейшем подобрать адекватный метод прогнози­рования (например, при инерционности первого рода это могут быть рег­рессионные модели, носящие стационарный характер, а при инерционно­сти второго рода - экстаполяционные модели или авторегрессия).

Основная задача анализа временных рядов состоит в выделении детерминированной составляющей (тренда) и случайной составляющей, а также в оценке их характеристик.

В общем виде временной ряд можно представить как

yt = f (t,xt) + εt, t = 1,2,...,T,                                               (1.7)


где у, - значения показателей временного ряда;

 f (t,xt) -детерминированная составляющая;

 х, — значения детерминированных факторов, влияющих на детер­минированную составляющую f  в момент времени t;

εt - случайная составляющая;

T- длина временного ряда.

В экономике часто роль детерминированной составляющей играет результирующий показатель, например, объем производства, обусловлен­ный общей тенденцией экономического роста, темпами и объемами инно­ваций, затратами ресурсов. На этот результат, кроме экономических фак­торов, могут оказывать долговременное влияние также некоторые природ­ные факторы. Случайная составляющая аккумулирует влияние множества не включенных в детерминированную составляющую факторов, каждый из которых отдельно оказывает незначительное влияние на результат.

Многие исследователи [10,21,26,32] при анализе динамических ря­дов выделяют следующие четыре основные составляющие:

• долговременную эволюторно изменяющуюся составляющую, кото­рая является результатом действия факторов, приводящих к постепенному изменению данного экономического показателя. Так, в результате научно-технического прогресса, совершенствования организации и управления производством относительные показатели результативности и эффектив­ности производства растут, а удельные расходы ресурсов на единицу по­лезного эффекта снижаются;

• долговременные циклические колебания проявляются на протяже­нии длительного времени в результате действия факторов, обладающих большими последствиями, либо циклически изменяющихся во времени (кризисы перепроизводства, периодические природные явления);

• кратковременные циклические колебания (сезонная составляющая) показывают колебания факторов в зависимости от времен года (продук­тивность сельского хозяйства, сезонные колебания розничного товарообо­рота);

• случайная составляющая образуется в результате суперпозиции большого числа внешних факторов, не участвующих в формировании детерминированной составляющей и оказывающих незначительное влияние на изменение значений показателей.

Для выявления типа инерционности необходимо проверить зависи­мость показателей от временного фактора. Для этой цели, в частности, можно порекомендовать метод, разработанный Ф.Фостером и А.Стюартом, предложившими по данным исследуемого ряда определять величины и, к I путем последовательного сравнения уровней ряда динамики [39]:

1, если уt – max из всех yt-1, yt-2, yt-n;

 
 


0, в остальных случаях

 
ut   =


1, если уt – min из всех yt-1, yt-2, yt-n;

 
 


0, в остальных случаях

 
lt =



Далее определяется две простые характеристики s и d:

s=∑st,                                                                                                   (1.10)

d=∑dt,                                                                                                   (1.11)

где: st = ut+lt,

     и dt=ut-lt,                                                                                         (1.12)

Суммирование в формулах (1.10) и (1.11) производится по всем чле­нам ряда. Полученные показатели s и d используются для проверки гипо­тезы об отсутствии тенденции (s - б средней, d - в дисперсии) в динамике исследуемого экономического показателя. Проверку гипотезы проводят, применяя t-критерий Стьюдента, то есть определяя:

tн=(d-0)/(σ1),                                                                                              (1.13)

tн=(s-µ)/( σ2),                                                                                              (1.14)

где µ математическое ожидание величины s;

σ - средние квадратические 0, изменения величин s и d.

Значения, µ, σ1 и σ2 табулированы. Если tн ≥ tкр то гипотеза о нали­чии тенденции отвергается, tкр находят по таблицам критических точек распределения Стьюдента в зависимости от уровня значимости гипотезы а (обычно выбирается на уровне 0,05) и числа степеней свободы k:

k = n – 1,                                                                                        (1.15)      

где n — число уровней ряда.

Если же tn <tкр, то гипотеза принимается, и для исследуемого объ­екта характерна инерционность второго рода. Данный метод достаточно прост и легко может применяться в практических разработках.

После проверки типа инерционности экономической системы (объ­екта) необходимо перейти к подбору адекватного метода прогнозирования, а также параметрических моделей в соответствии с алгоритмом, показан­ным к количественным расчетам и верификации результатов.

2. МЕТОДЫ ЭКОНОМИЧЕСКОГО ПРОГНОЗИРОВАНИЯ

2.1. Классификация и область применения методов прогнозирования

Выбор конкретного метода является одной из наиболее важных за­дач прогнозирования. Возрастание актуальности разработки формальных, в том числе логических процедур, при выборе метода прогнозирования отмечает в своих работах Глущенко В.В. [8,9]. При этом можно указать три основные группы причин, влияющих на необходимость выбора метода прогнозирования.

Первая группа состоит в увеличении числа методов прогнозирова­ния, которое и в перспективе будет возрастать в связи с разнообразием практических задач прогнозирования (в настоящее время число методов прогнозирования приближается к двумстам).

Вторая группа причин заключается в том, что в современных неоп­ределенных условиях (переходный период, экономический кризис) суще­ственно возрастает сложность как самих решаемых задач, так и объектов прогнозирования (создание корпоративных групп, холдингов, объедине­ний и других сложных организационно-производственных структур).

Третья группа причин связана с возрастанием динамичности (под­вижности) рыночной среды, ускорением темпов инновационного процесса. Поэтому на выбор конкретного метода прогнозирования влияют:

• существо проблемы, подлежащей решению;

• динамические характеристики объекта прогнозирования;

• вид и характер информационного обеспечения;

• выбранный период упреждения прогноза (и его соотношение с про­должительностью цикла разработки товара или услуги);

• требования к результатам прогнозирования (точности, надежности и достоверности).

Следует иметь в виду, что названные факторы должны рассматри­ваться в системном единстве.

Для выбора наиболее подходящего метода прогнозирования на предпрогнозном этапе необходимо структурировать информацию об объ­екте прогнозирования, проанализировать ее (оценить полноту, непротиво­речивость, сопоставимость и соизмеримость данных, точность и достовер­ность информации).

Первоначально необходимо выделить из числа общеизвестных мето­дов прогнозирования как приемлемые для решения конкретной задачи, так и те, которые применить по тем или иным причинам нельзя. Последние следует исключить из числа рассматриваемых альтернатив.

Условно все существующие методы прогнозирования можно разбить на две большие группы:

фактографические (формализованные), которые базируются на фактически имеющейся информации об объекте прогнозирования и его прошлом. Они условно подразделяются на

- статистические, основанные на построении и анализе динамиче­ских рядов, либо на данных случайной выборки;

- аналоговые методы, направленные на выявление сходства в закономерностях развития различных систем и процессов.

экспертные (интуитивные) методы используют мнения специали­стов-экспертов и применяются тогда, когда невозможно формализовать изучаемые процессы или имеет место неопределенность развития хозяйственной системы.

 



















Рис.2.1. Методы экономического прогнозирования.

Обоснованность прогноза в значительной мере зависит от выбора метода прогнозирования(рис.2.1).

Особое место в классификации методов прогнозирования занимают комбинированные методы, которые объединяют различные методы про­гнозирования. Использование комбинированных методов особенно акту­ально для сложных социально-экономических систем, когда при разработ­ке прогноза показателей каждого элемента системы могут быть использо­ваны различные сочетания методов прогнозирования. Разновидностью комбинированных методов можно считать эконометрическое моделирова­ние.

Практическое применение того или иного метода прогнозирования определяется такими факторами, как объект прогноза, сложность и струк­тура системы, наличие исходной информации, квалификация прогнозиста. В таблице 2.1 приведена характеристика различных методов прогнозиро­вания экономических систем и область их применения.

Краткая характеристика методов прогнозирования и область их применения

Метод


Основные условия применения


Особенности приме­нения


Область применения


1


2


3


4


1 . Сценар­ный (функ­ционально-логическое прогнозиро­вание)


Наличие определен­ного количества ва­риантов       развития системы


Подчинение  страте­гической     функции развития     системы, выбор   оптимальной альтернативы управ­ления. Установление логической последо­вательности событий


Сценарии   разрабатыва­ются   для   определения рамок  будущего  разви­тия технологии, рыноч­ных сегментов, стран и регионов  и т.д. Долго­срочный прогноз, прак­тически неограничен


2. Экстра­поляция


Количественное   оп­ределение     важней­ших параметров по­ведения   объекта  не менее чем за 5  пе­риодов


Прогнозирование на основе   предположе­ния о неизменности тенденций   в   буду­щем


Прогнозирование   пока­зателей по предприятию, прогноз потребностей в ресурсах,  прогнозирова­ние спроса, финансовое прогнозирование.   Крат­косрочный прогноз


3. Регресси­онный ана­лиз


Используется       для объектов,   имеющих сложную, многофак­торную        природу. Предполагает   нали­чие выборки по ис­следуемым объектам и показателям


Исследует     зависи­мость  определенной величины от другой величины    или   не­скольких величин


Прогнозирование объема инвестиций,  уровня  за­трат,    финансовых    ре­зультатов, объемов про­даж и т.п. Используется в среднесрочном прогно­зировании


4. Эксперт­ный


Создание     эксперт­ной группы из высо­коквалифицирован­ных специалистов в данной         области (численностью     не менее 9 человек)


Прогнозирование развития     объектов по           экспертным оценкам


Прогнозирование   рын­ков  сбыта,  сроков  об­новления   выпускаемой продукции,        прогноз технического       уровня продукции.   Срок   про­гнозирования   не   огра­ничен


5. Струк­турное про­гнозирова­ние


Возможности реше­ния   проблемы   при сохранении      функ­ций,   но   изменении структуры   и   (или) значений     парамет­ров объекта


Построение       про­гнозных   графов   и «дерева целей»


Прогноз развития объ­екта в целом, формули­ровка  сценария дости­жения   прогнозируемой цели. Срок прогнозиро­вания не ограничен


6. Прогно­зирование по аналогии


Используется      при схожести    объектов прогнозирования, их целей,   последствий прогноза


Применяется только для доказанной ана­логии между объек­тами, нельзя приме­нять для новых объ­ектов,       процессов, ситуаций,    т.е.    не имеющих аналогов


Может применяться для установления      качест­венной  и  количествен­ной аналогии с целью изучения опыта, результатов   и   т.п.   Кратко­срочное  и  среднесроч­ное прогнозирование


7.Комплексные системы   прогнозирования (комби­нирован­ный метод)


Условия   определен­ные для конкретных методов прогнозиро­вания (п.п. 1-6)


Возможность рацио­нального   сочетания методов с целью по­вышения     точности прогнозирования, снижения затрат на прогнозировании


Для всех видов прогно­зирования. Срок не ог­раничен


Важную роль в выборе метода прогнозирования может сыграть ти­повое представление объекта прогнозирования. Это связано с тем, что ка­ждому из типовых представлений объекта можно поставить в соответствие множество элементов методической среды прогнозирования. Это отражает булева (логическая) матрица наличия или отсутствия связи между типо­вым представлением объекта и методом прогнозирования (табл. 2.2) [9]. В этой таблице 0 - отсутствие связи между типовым представлением объекта и искомым методом прогнозирования; 1 - если такая связь существует.

Строки этой матрицы пронумерованы от 0 до 6 и соответствуют:

1 - интуитивному представлению;

2 - предметному представлению (дескриптивные модели);

3 - функционально-декомпозиционному представлению;

4 - представлению в виде контуров обслуживания;

5 - агрегативно-декомпозиционному представлению;

6 - представлению в виде модели «параметр-поле допуска».

Столбцы этой матрицы пронумерованы в соответствии с номерами видов прогнозирования:

1 - экспертное;

2 - функционально-логическое;

3 - структурное;

4 - параметрическое;

5 - прогнозирование по аналогии;

6 - комплексные системы прогнозирования [3].





Таблица 2.2

Булева матрица наличия или отсутствия связи между типовым представ­лением объекта и группой методов прогнозирования

№п/п


1


2


3


4


5


6


1


1


0


0


0


1


0


2


1


0


0


0


1


0


3


1


1


0


0


1


1


4


1


1


1


0


1


1


5


1


1


1


0


1


1


6


1


1


1


1


1


1


Прогнозист в процессе исследования выбирает вид методов прогно­зирования, а затем в рамках этой группы отбирает наиболее подходящий, адаптирует его к особенностям объекта, при необходимости модифицирует или разрабатывает свой метод. Подбор адекватного метода позволяет обеспечить функциональную полноту, достоверность и точность прогноза, уменьшить затраты времени и ресурсов на прогнозирование.

2.2. Фактографические методы прогнозирования

Как было ранее показано (см. п. 2.1.), фактографические методы про­гнозирования можно условно разделить на две большие группы: статисти­ческие и методы аналогий.

Статистические методы прогнозирования

Статистические методы изучены лучше всего, однако не являются единственно возможными. В ряде случаев прибегают к построению сцена­риев развития, морфологическому анализу, историческим аналогиям. Но­вым подходом к прогнозированию НТП является, в частности, «симптома­тическое» прогнозирование, суть которого заключается в выявлении «предвестников» будущих сдвигов в технике и технологии. Однако в прак­тике экономики преобладающими по-прежнему являются статистические методы (что связано с наличием инерционности). Немаловажным является и то, что статистические методы опираются на аппарат анализа, развитие и практика которого имеют достаточно длительную историю.

Процесс статистического прогнозирования распадается на 2 этапа:

Индуктивный, заключающийся в обобщении данных, наблюдаемых за более или менее продолжительный период времени, и в представлении соответствующих статистических закономерностей в виде модели. Про­цесс построения модели включает: выбор формы уравнения, описывающе­го динамику или взаимосвязь явлений; оценивание его параметров.

Дедуктивный — собственно прогноз. На этом этапе определяют ожидаемое значение прогнозируемого показателя.

Не всегда статистические методы используются в чистом виде. Часто их включают в виде важных элементов в комплексные методики, преду­сматривающие сочетание статистических методов с другими, например, экспертными оценками.

Статистические методы основаны на построении и анализе динами­ческих рядов, либо данных случайной выборки. К ним относятся методы прогнозной экстраполяции, корреляционный и регрессионный анализ. В группу статистических методов можно включить метод максимального правдоподобия и ассоциативные методы — имитационное моделирование и логический анализ.

Динамику исследуемых показателей развития хозяйственной систе­мы можно прогнозировать при помощи двух различных групп количест­венных методов: методов однопараметрического и многопараметрического прогнозирования. Общим для обеих групп методов является, прежде всего, то, что применяемые для параметрического прогнозирования математиче­ские функции, основываются на оценке измеряемых значений прошедшего периода (ретроспективы). Однопараметрическое прогнозирование базиру­ется на функциональной зависимости между прогнозируемым параметрам (переменной) и его прошлым значением, либо фактором времени.

ŷt+1=ſ(yt,yt-1,…,yt-n).                                                                            (2.1)

При обработке таких прогнозов пользуются методом экстраполяции трендов, экспоненциальным сглаживанием или авторегрессией.

В основе многопараметрических прогнозов лежит предположение о причинной взаимосвязи между прогнозируемым параметром и нескольки­ми другими независимыми переменными:

ŷt+1=f(x),  или;                                                                                        (2.2)

ŷt+1=f(x1, x2,…, xn).

Однопараметрические методы следует использовать при кратко­срочном (менее одного года) прогнозирования показателей, изменяющихся еженедельно или ежемесячно. Многопараметрические оправдывают себя для средне- и долгосрочного прогнозирования.

 


















 


   да                                                  нет                                              да                                 нет 

 







 



Нет                           

Инструмент

прогноза


Скользящие и

экспоненциаль-

ные средние, ав-

торегрессия

 
                                              да                                  нет                                             да

 




Рис.2.2.Схема выбора статистического метода прогнозирования


Выбор конкретного параметрического метода прогнозирования, кроме того, зависит от характера исходной статистической базы. В качест­ве исходных данных могут быть взяты выборочные наблюдения и динами­ческие ряды. В первом случае в качестве инструмента прогноза применя­ется регрессия. Значительно чаще, чем случайная выборка, информацион­ной базой для прогноза являются динамические ряды.

Тогда в качестве инструментов прогноза выступают тренды, авто­регрессия, смешанная авторегрессия и т.п. Выбор адекватного подхода за­висит от того, обнаружены ли экзогенные факторы, влияющие на значение зависимой переменной или нет, влияют ли на зависимую переменную предшествующие значения этой же переменной и т.д. В целом процесс вы­бора конкретного метода статистического параметрического прогнозиро­вания показан на рис. 2.2. [39].

Методы экстраполяции сводятся к обработке имеющихся данных об объекте прогнозирования за прошлое время и распространению обнару­женной в прошлом тенденции на будущее.

Методы моделирования — наиболее сложный метод прогнозирова­ния, состоящий из разнообразных подходов к прогнозированию сложных систем, процессов и явлений. Эти методы могут пересекаться и с эксперт­ными методами.

Экстраполяция трендов

Наиболее распространенными из группы математических методов являются методы прогнозной экстраполяции. Временной ряд при экстра­поляции представляется в виде суммы детерминированной (неслучайной) составляющей, называемой трендом, и стохастической (случайной) со­ставляющей, отражающей случайные колебания или шумы процесса.

Прогнозную экстраполяцию можно разбить на два этапа.

• Выбор оптимального вида функции, описывающей ретроспектив­ный ряд данных. Выбору математической функции для описания тренда предшествует преобразование исходных данных с использованием сгла­живания и аналитического выравнивания динамического ряда.

• Расчет коэффициентов (параметров) функции, выбранной для экст­раполяции.

Для оценки коэффициентов чаще остальных используется метод наименьших квадратов (МНК).

Сущность МНК состоит в отыскании коэффициентов модели тренда, минимизирующих ее отклонение от исходного временного ряда:

S =  ∑(yt - ŷ)2 → min,                                                                    (2.3)

где ŷ, - расчетные (теоретические) значения тренда;

у — фактические значения ретроспективного ряда;

n — число наблюдений.

Подбор модели в каждом конкретном случае осуществляется по це­лому статистически ряду критериев (дисперсии, корреляционному отно­шению и др.). Кроме того, для выбора зависимости

ŷt=f(t)

существует несколько подходов. Это метод последовательных разностей, метод характеристик прироста, визуальный (глазомерный) выбор формы. Расчет оценок прироста показателя, дополненный визуальным выбором взаимосвязи, уменьшает риск неправильного выбора модели для прогнози­рования. В частности, могут быть рекомендованы следующие аппрокси­мирующие зависимости:

∆ Y / ∆ t = const → ŷt =a0 + a1 t,                                                           (2.4)

∆ ln y / ∆ t = const → ŷt = a0 ta,                                                             (2.5)

∆ ln y / ∆ ln t = const → ŷt = a0 tt1,                                                        (2.6)

∆ Y2 / ∆ X2 = const → ŷt = a0 + a1 t + a2 t2,                                            (2.7)

∆ (t / y) / ∆ t = const → ŷt = t / (a0 + a1 t).                                               (2.8)

В Приложении 1 показаны графические зависимости, позволяющие осуществлять визуальный выбор формы зависимости прогнозируемого по­казателя от фактора времени, а в Приложении 2 - системы нормальных уравнений, применяемые для оценки параметров полиномов невысоких степеней.

Для выявления более четкой тенденции уровни, нанесенные на гра­фик, можно сгладить (элиминировать) с помощью трех приемов:

• метода технического выравнивания - когда на графике визуально (на глаз) проводится равнодействующая линия, отражающая на взгляд ис­следователя тенденцию развития;

• метода механического сглаживания - расчет скользящих и экспо­ненциальных средних;

• метода аналитического выравнивания - построение тренда.

Преимущество трендовой модели в более высокой степени надежно­сти. Кроме того, она позволяет экономически интерпретировать параметры уравнения тренда и достаточно наглядно изображает тенденцию и откло­нения от нее на графике.

В рыночной ситуации можно порекомендовать конкретные виды функций, наиболее пригодные для экстраполяции [29].

Спрос на ряд непродовольственных товаров может быть описан сте­пенной функцией или экспонентой (особенно на активных этапах жизнен­ного цикла товаров). Общие закономерности спроса отражаются кривой Гомперца. При изучении влияния фактора времени на спрос может быть использована логистическая (сигмоидальная) кривая. Процесс затухания роста спроса по мере перехода населения к группам населения с более вы­соким доходом отражается полулогарифмической кривой.

В развитии рынка как единого экономического пространства (как и в развитии локальных рынков) могут проявиться определенная повторяе­мость, цикличность, обусловленная как внутренними свойствами рынка, так и внешними причинами.

Рис. 2.3. Моделирование тенденции продажи товара по стадиям жизненного цикла

Условные обозначения:

Страницы: 1, 2, 3, 4, 5


© 2010 РЕФЕРАТЫ