бесплатные рефераты

Автоматизированное редактирование частиц в компьютерной графике

2.5 Объектная модель приложения

Так как приложение было разработано с использованием возможностей объектно-ориентированного языка С++, следует раскрыть его объектную структуру. Подробно объектная структура программного средства описана в Приложении Г, здесь же можно привести общий обзор системы классов.

а) класс MyApp, отвечает за инициализацию приложения, создаётся и управляется полностью из среды wxWidgets. Это корневой класс всей проектируемой части приложения.

б) модуль очереди эмиттеров. Включает в себя:

1) класс ParticleSystemChain, то есть непосредственно саму очередь; в системе существует singleton-объект данного класса;

2) содержащиеся в очереди эмиттеры - объекты класса ParticleSystem;

3) для формирования и использования корректных OpenGL текстур на основании битовых изображений используются объекты класса MyTexture.

в) класс MainFrame - корневой класс оконного пользовательского интерфейса; в системе существует singleton-объект данного класса;

г) класс PSChainFrame представляет собой окно управления очередью систем;

д) объекты PSLabel применяются в PSChainFrame для представления эмиттеров, представляют собой пиктограммы;

е) PSInputFrame используется для ввода пользовательских данных активной системы;

ж) объекты классов MySpinCtrld и MySpinEditCtrld - пользовательские элементы управления, используемые для ввода чисел с плавающей точкой из указанного диапазона, применяются в PSInputFrame;

з) PSOutputFrame используется для отображения результатов работы приложения (вывода вычисленных графических примитивов - частиц); объект MyCanvas - предоставляется OpenGL в качестве контекста визуализации;

Это общий перечень разработанных в рамках программного средства классов с кратким описанием их функциональности. Взаимосвязи между ними и другими, менее значительными, классами, а также внутренняя структура классов в более полном виде раскрывается в Приложении Г.

2.6 Требования к программным, аппаратным ресурсам и ОС

Для сборки приложения необходимо наличие набора встраиваемых (статических) библиотек среды wxWidgets, установленных в системный каталог (или в один из каталогов поиска статических библиотек, указанных в настройках среды разработки Microsoft Visual Studio 2005 и в свойствах проекта). Для корректной работы приложения необходимо наличие в системе динамической библиотеки OpenGL (любой версии, по умолчанию с OS Windows поставляется версия 1.0). Драйвер OpenGL используется для растеризации графических данных, генерируемых редактором.

Приложение требует не более 30 MB оперативной памяти, 20 MB - виртуальной, 40 MB дискового пространства.

Минимальное разрешения дисплея монитора, требуемое для корректной работы приложения, составляет 1024x768 точек.

Приложение работает под управлением любой OС Windows (версии не ниже Windows XP SP2).

Кроме того, для корректной работы приложения, собранного в Microsoft Visual Studio 2005, необходимо наличие в системе установленных специальным образом библиотек (так называемых манифестов), иначе приложение не запустится. В качестве альтернативы можно собрать приложение с использованием Microsoft Visual Studio 2003, однако при этом будет использован графический пользовательский интерфейс старого образца.

3. Тестирование

3.1 Анализ надежности

Испытания проводятся с целью выявления отклонений в работе программы и результатах её функционирования, оценки причин таких отклонений. Отклонения полученных результатов от эталонов используются для оценки качества программы.

Основным методом обнаружения ошибок при проведении испытаний программы являлось тестирование, в котором целесообразно выделить три стадии:

- тестирование для обнаружения ошибок в программе, где выявлялись все отклонения результатов функционирования реальной программы от заданных эталонных значений;

- тестирование для диагностики обнаруженных искажений результатов, с целью обнаружения инструкций и данных, явившихся причиной отклонения результатов от эталонных при тестировании для обнаружения ошибок;

- тестирование для контроля выполненных корректировок программы и данных, где подтверждалась правильность выполненной корректировки.

Говоря о тестировании, понимается проверка программы не только в статическом режиме, когда обнаруживаются ошибки кода программы, но и динамическая проверка, включающая контроль адекватности реакции системы на заявки пользователя и поведения системы при возникновении недопустимых ситуаций.

Найденные ошибки устранялись, процесс продолжался до тех пор, пока работа приложения не была признана удовлетворительной.

3.2 Тестовые примеры

При тестировании был проведен ряд тестов различной направленности:

- тест корректности вводимых пользовательских данных, в рамках которого была проверена система ввода всех видов данных, используемых приложением, с попытками ввода некорректных данных;

- тест работоспособности с граничными значениями параметров; любое приложение необходимо проверять на работоспособность в граничных состояниях, так как, в силу своей неочевидности и низкой вероятности возникновения, это, как правило, наиболее узкие места в функциональности;

- тест корректности работы приложения на ПК с различными конфигурациями (драйверами графического ускорителя); приложения, использующие низкоуровневую функциональность драйвера (или близкую к ней), необходимо дополнительно тестировать на совместимость с различными разновидностями драйверов данного типа. В случае с разрабатываем приложением, необходимо выполнить проверку на корректность его работы с различными драйверами видеосистемы, так как приложение использует низкоуровневые возможности OpenGL в качестве своей осевой функциональности.

3.3 Реакция программы на тесты

С помощью встроенного компилятора были обнаружены синтаксические ошибки. Стоит отметить, что допущение множества тривиальных синтаксических ошибок является нормальным явлением при разработке программного средства, поэтому рекомендуется как можно чаще выполнять рекомпиляцию текущего разрабатываемого программного модуля. Это позволяет выявлять такие ошибки и избегать их накапливания. В противном случае происходит сильное усложнение процесса их локализации в финальной версии модуля, так как они начинают влиять друг на друга. В такой ситуации бывает тяжело отделить одну ошибку от другой.

После успешной компиляции и сборки приложения, непосредственно в процессе тестирования, были обнаружены и устранены ошибки времени исполнения. Из наиболее трудно-устранимых можно отметить ошибку приведения данных типов с плавающей запятой при пользовательском вводе (что приводило к их неявному искажению), а также ошибки проектирования пользовательского интерфейса, в связи с чем последний был целиком переработан несколько раз. При тестировании приложения с графическим ускорителем от фирмы ATI были выявлены ошибки инициализации текстурных данных, из-за чего нарушался их вывод. Из ошибок работы приложения при установленных граничных значениях параметров можно выделить ошибку генерации частиц при заданной ширине и/или высоте эмиттера, равной нулю. При этом для частиц генерировались координаты, сильно выходящие за пределы границ эмиттера. Эту ошибку можно назвать логической ошибкой программы.

При устранении найденных ошибок отладка программы осуществлялась встроенным отладчиком MS Visual Studio 2005.

3.4 Вывод по результатам тестирования

Цель проведения испытаний состояла в том, чтобы рассмотреть все возможные варианты работы программы, протестировать ее в нормальных, исключительных и экстремальных условиях, выявить недостатки и устранить их, если таковые имели место.

В результате испытаний на контрольных примерах было доказано, что данная программа работает согласно заданному алгоритму. Все ошибочные ситуации были рассмотрены, ошибки - устранены.

4. Применение программы

4.1 Назначение программы

Программа предназначена для создания и редактирования сложных графических эффектов частиц. В процессе разработки была обеспечена реализация программой следующего набора функций:

- управление динамическим набором эмиттеров (систем частиц);

- управление частицами каждого эмиттера;

- управление общими параметрами рисования;

- ввод и вывод данных на внешние носители;

4.2 Инсталляция программы

Разработанное программное средство не нуждается в инсталляции. Однако следует заметить, что для работы приложения необходимо наличие в системе динамической библиотеки OpenGL любой версии (с MS Windows по умолчанию поставляется версия 1.0).

Кроме того, для корректной работы приложения, собранного в Microsoft Visual Studio 2005, необходимо наличие в системе установленных специальным образом библиотек (так называемых манифестов), иначе приложение не запустится. В качестве альтернативы можно собрать приложение с использованием Microsoft Visual Studio 2003, однако при этом будет использован графический пользовательский интерфейс старого образца. Более подробно о манифестах, их типах и назначениях, можно прочитать на официальном сайте корпорации Microsoft [13].

4.3 Структура входных данных

Входными данными приложения служат параметры эмиттеров, задаваемые пользователем, а также параметры отображения. Более подробно со структурой входных данных можно ознакомиться в подразделе 1.1, или на диаграмме потоков данных (Приложение В).

4.4 Диалог с пользователем

Диалог с пользователем осуществляется посредством панели состояния, располагающейся внизу экрана приложения. На ней осуществляется вывод текущей частоты обновления картинки, а также контекстные подсказки, содержимое которых зависит от текущих действий пользователя.

При попытке выхода из приложения с несохранёнными данными проекта осуществляется запрос пользователя о необходимости выполнить сохранение данных.

При запросе справочной информации системы помощи или информации о разработчике осуществляется активация диалоговых окон с соответствующими запросу данными.

В остальном, с учётом типа и назначения приложения, используемого в нём интуитивно понятного, продуманного графического пользовательского интерфейса, необходимость в дополнительной обратной связи с пользователем отпадает.

4.5 Форма представления выходных данных

Выходные данные формируются, как уже было отмечено выше, в нескольких формах. Можно просматривать выходную информацию в графическом виде непосредственно на экране редактора. Также разработчик приложения, использующий редактор (предоставляемый разработчику исходный код для вывода эффектов частиц), может выводить данные в окно своего приложения (предварительно связав его с OpenGL средствами ОС). Наконец, можно просматривать выгруженные на диск выходные данные с помощью любого текстового (XML) редактора.

5. Оптимизация зрительного взаимодействия оператора со средствами отображения информации па основе ЭЛТ

5.1 Особенности зрительного восприятия информации и формирование утомления зрительного анализатора оператора

Зрительное восприятие -- совокупность процессов построения зрительного образа окружающего мира. Из этих процессов более простые обеспечивают восприятие цвета, которое может сводиться к оценке светлоты, или видимой яркости, цветового тона, или собственно цвета, и насыщенности как показателя отличия цвета от серого равной с ним светлоты. При этом основные механизмы цветового восприятия имеют врожденный характер и реализуются за счет структур, локализованных на уровне подкорковых образований мозга. Более филогенетически поздними являются механизмы зрительного восприятия пространства, в которых происходит интеграция соответствующей информации о пространстве, полученной также от слуховой, вестибулярной, кожно-мышечной сенсорных систем. В пространственном зрении выделяют два основных класса перцептивных операций, обеспечивающих константное восприятие. Одни позволяют оценивать удаленность предметов на основе бинокулярного и монокулярного параллакса движения. Другие позволяют оценить направление. В основном пространственное восприятие обеспечивается врожденными операции, но их окончательное оформление происходит в приобретаемом в течение жизни опыте практических действий с предметами. Пространственное восприятие является основой восприятия движения, которое также осуществляется за счет врожденных механизмов, обеспечивающих детекцию движения. Более сложными операциями зрительного восприятия является операции восприятия формы, которые и в филогенезе, и онтогенезе формируются достаточно поздно. Основой выступает восприятие пространственных группировок как объединение однотипных элементов, расположенных в достаточно узком зрительном поле.

В процессе работы на компьютере, даже отвечающем всем требованиям ТСО, при соблюдении эргономических параметров рабочего места и правильной организации режимов труда и отдыха пользователь все-таки может испытывать определенную зрительную и мышечную усталость, физический и психологический дискомфорт, которые усиливаются, если не принять профилактических мер. При использовании уже устаревших на сегодняшний день (в отношении дисплеев ПК) ЭЛТ, этот эффект проявляется особенно сильно, так как нагрузка на органы зрения в этом случае гораздо выше. При этом знание и осуществление профилактических мер становится абсолютно необходимым условием длительной и безопасной для здоровья работы с дисплеем.

К профилактическим мерам относятся комплексы упражнений для глаз, для снятия общего и локального утомления с различных групп мышц организма, для стимуляции деятельности нервной, сердечно-сосудистой, дыхательной систем, для повышения двигательной активности и умственной работоспособности.

Наиболее распространенным недомоганием у пользователей ПК является зрительное утомление, которое при отсутствии надлежащих мер и при продолжении работы может проявиться в виде частого моргания, зуда и жжения в глазах, рези, слезотечения и других реакций.

В качестве профилактических мер для снижения утомления глаз, улучшения кровоснабжения глазного яблока, релаксации глазодвигательных мышц рекомендуется проводить специальные упражнения для глаз, взрослым пользователям - во время регламентированных перерывов вместе с другими комплексами физических упражнений, а студентам - через каждые 20-25 минут работы. При появлении зрительного дискомфорта эти упражнения следует проводить индивидуально, самостоятельно и раньше указанного времени.

Специалистами-медиками и гигиенистами разработано большое количество разнообразных упражнений, направленных на восстановление и защиту от перегрузок органов зрения упражнений. Они широко представлены, например, в источнике [8].

Приведём пример одного из наиболее простых в реализации упражнений. Упражнение называется "пальминг" и состоит в следующем. Пальцы рук, сложенные вместе, следует перекрестить в центре лба. При этом ладони накроют глазные впадины, полностью исключая доступ света, и в то же время не будут сжимать глазные яблоки, оставляя возможность свободно двигать веками. В процессе такого отдыха органов зрения, т. е. в период прекращения к ним доступа света, происходят химическое восстановление рецепторов глаз и расслабление мышечных волокон, перенесших напряжение после интенсивных потоков образов. Подобное искусственное затмение зрения является одним из лучших упражнений для глаз, значительно ускоряя процесс расслабления глазных мышц и улучшая кровообращение. Двухминутный пальминг восстанавливает функциональные свойства сетчатки глаза.

Разумеется, перед возможной систематической работой с дисплеями для гигиены зрения и его профилактического контроля необходимо предварительно пройти всестороннее обследование у окулиста и в дальнейшем регулярно, не менее одного раза в год, повторять это обследование.

При возникновении заметного зрительного дискомфорта в процессе работы, несмотря на хорошее качество монитора, правильную эргономическую организацию труда и соблюдение режимных требований, а также выполнение указанных упражнений, следует ограничить время работы с дисплеем. В этом случае должна быть либо увеличена длительность перерыва для отдыха, либо произведена смена деятельности.

5.2 Инженерно-психологические требования к средствам отображения информации (СОИ) и их расположению в рабочем пространстве

Средства отображения информации предназначены для получения человеком сведений о состоянии объекта управления, ходе производственного процесса, наличии энергетических ресурсов, состоянии каналов связи и т. д. Эти данные предъявляются человеку в виде количественных и качественных характеристик. Средства отображения информации могут применяться, например, в тех случаях, когда человек не может непосредственно наблюдать за технологическим процессом вследствие его территориальной удаленности, вредности или опасности при контакте с предметом труда.

Средства отображения информации способствуют повышению точности непосредственного наблюдения, с их помощью информация предъявляется в более удобной для восприятия и обработки форме. Широкое внедрение систем дистанционного управления привело к тому, что иногда СОИ становятся единственным источником информации об управляемом объекте и рабочем процессе. В этом случае человек имеет дело не с реальными объектами, а с их моделями, т. е. с информацией, организованной в соответствии с определенной системой правил и подаваемой на средства ее отображения. Информационная модель позволяет человеку анализировать состояние управляемого объекта, принимать решения и осуществлять контроль и управление процессом производства.

Эргономические требования к визуальным СОИ устанавливают необходимые производственные, яркостные, частотные характеристики зрительных образов, а также способы их размещения на рабочем месте. Нарушение этих требований приводит к снижению эффективности рабочего процесса, повышению уровня опасности для здоровья и жизни работников и прочим негативным результатам.

Все эргономические требования изложены в соответствующих ГОСТах (ГОСТ 21829- 76, ГОСТ 21480-76, ГОСТ 21837-76, ГОСТ 22902-78).

Остановимся на основных требованиях к мониторам и характеристиках изображения на экране.

Монитор - это, как правило, единственное устройство, "лицом к лицу" с которым пользователь проводит не один год. Удобочитаемость информации на экране зависит от четкости элементов изображения. Основными параметрами изображения на экране монитора являются яркость, контраст, размеры и форма знаков, отражательная способность экрана, наличие или отсутствие мерцаний.

Основные нормируемые визуальные характеристики мониторов и соответствующие допустимые значения этих характеристик представлены в таблице 5.1.

Таблица 5.1 - Некоторые нормируемые визуальные параметры мониторов [9]

Параметры

Допустимые значения

Яркость знака или фона (измеряется в темноте)

35-120 кд/м2

Контраст

От 3:1 до 1,5:1

Временная нестабильность изображения (мерцания)

Не должна быть зафиксирована более90% наблюдателей

Угловой размер знака

16-60

Отношение ширины знака к высоте

0,5-1,0

Отражательная способность экрана (блики)

не более 1%

Неравномерность яркости элементов знаков

не более (25%)

Неравномерность яркости рабочего поля экрана

не более (20%)

Формат матрицы знака

не менее 7 * 9 элементов изображения

Размер минимального элемента отображения (пикселя) для монохромного монитора, мм.

0,3

Допустимое вертикальное смещение однотипных знаков, % от высоты матрицы

не более 5

Допустимая пространственная нестабильность изображения (дрожание по амплитуде изображения) при частоте колебаний в диапазоне от 0,5 до 30 Гц, мм

не более 2L*10-4 (L-расстояние наблюдения, мм.)

Кроме того, компьютеры и мониторы, а также организация рабочих мест операторов должны соответствовать принятым на территории Республики Беларусь санитарным правилам и нормам [7], касающимся охраны зрения пользователей персональных компьютеров:

Конструкция монитора должна обеспечивать возможность фронтального наблюдения экрана путем поворота корпуса в горизонтальной плоскости вокруг вертикальной оси в пределах 30° и в вертикальной плоскости вокруг горизонтальной оси в пределах 30° с фиксацией в заданном положении. Дизайн монитора должен предусматривать окраску корпуса в спокойные мягкие тона с диффузным рассеиванием света.

Корпус монитора и ПК, клавиатура и другие блоки и устройства ПК должны иметь матовую поверхность одного цвета и не иметь блестящих деталей, способных создавать блики. На лицевой стороне корпуса монитора не рекомендуется располагать органы управления, маркировку, какие-либо вспомогательные надписи и обозначения. При необходимости расположения органов управления на лицевой панели они должны закрываться крышкой или быть утоплены в корпусе.

Экран видеомонитора должен находиться от глаз пользователя на оптимальном расстоянии 600-700 мм, но не ближе 500 мм с учетом размеров алфавитно-цифровых знаков и символов.

Рабочее место с монитором и ПК должно быть оснащено легко перемещаемым пюпитром для документов.

Уровень глаз при вертикально расположенном экране монитора должен приходиться на центр или 2/3 высоты экрана. Линия взора должна быть перпендикулярна центру экрана и оптимальное ее отклонение от перпендикуляра, проходящего через центр экрана в вертикальной плоскости, не должно превышать 5°, допустимое - 10°.

5.3 Требования к организации, качественным и количественным характеристикам освещения рабочего места оператора и их реализация. Оптимизация режима труда и отдыха оператора

Рациональное освещение помещений - один из наиболее важных факторов, от которых зависит эффективность трудовой деятельности человека.

Хорошее освещение необходимо для выполнения большинства задач оператора. Для того чтобы спланировать рациональную систему освещения, учитывается специфика рабочего задания, для которого создается система освещения, скорость и точность, с которой это рабочее задание должно выполняться, длительность его выполнения и различные изменения в условиях выполнения рабочих операций.

Нормами для данных работ установлена необходимая освещенность рабочего места Ен=300лк (средняя точность работы по различению деталей размером от 1 до 10 мм).

Для освещения рабочего места оператора обычно используются люминесцентные лампы - они имеют ряд преимуществ перед лампами накаливания: их спектр ближе к естественному, они имеют большую экономичность (больше светоотдача) и срок службы (в 10-12 раз). Наряду с этим имеются и недостатки: их работа иногда сопровождается шумом, они хуже работают при низких температурах, имеют малую инерционность.

В общем, все основные требования к освещению помещений учреждений применимы также к освещению рабочих мест у видеоэкранов дисплейных устройств. Однако имеется целый ряд особенностей работы у видеоэкранов, которые необходимо учитывать. Кроме тщательного ограничения отражения это связывается, прежде всего, с правильным выбором уровня освещенности и проблем уменьшения скачков яркости при смене поля зрения. Источники света, такие как светильники и окна, которые дают отражение от поверхности экрана, значительно ухудшают точность знаков. Наиболее важным является соотношение яркостей при нормальных условиях работы, т.е. освещенность на рабочем месте около 300 лк, и средняя плотность заполнения видеоэкрана. Отражение, как на экране, так и на рабочем столе и клавиатуре, влечет за собой помехи физиологического характера, которые могут выразиться в значительном напряжении, особенно при продолжительной работе. Отражение, в том числе и от вторичных источников света, должно быть сведено к минимуму. Для защиты от избыточной яркости окон могут быть применены занавеси, шторы и экраны. Использование дополнительного освещения рабочего стола, например, для освещения документов с нечетким шрифтом, увеличивает соотношение яркостей между документацией и экраном и является нежелательным без соответствующей регулировки яркости экрана.

В помещении, предназначенном для работы на компьютере, должно иметься как естественное, так и искусственное освещение.

Что касается естественного освещения, лучше всего, если окна в комнате выходят на север или северо-восток. Как уже было сказано, в поле зрения пользователя не должно быть резких перепадов яркости, поэтому окна желательно закрывать шторами либо жалюзи. Уровень естественного освещения нормируется коэффициентом естественной освещенности (КЕО) - это отношение естественной освещенности внутри помещения Евн к одновременному значению наружной горизонтальной освещенности Ен. Освещенность Е измеряется в люксах (Лк). Фактическая освещенность должна быть больше или равна нормируемой. При эксплуатации зданий необходимо поддерживать светоотдачу и светопропускаемость окон, т. е. производить их своевременную чистку. При незначительном выделении пыли - 4 раза в год.

Искусственное освещение может быть общим и комбинированным, внутренним и наружным. Искусственное освещение обеспечивается электролампами различной мощности, заключенными в специальную арматуру (светильники, различных типов и исполнений).

Искусственное освещение рабочего места оператора должно быть общим и равномерным, использование одних только настольных ламп недопустимо.

Одним из главных способов повлиять на процессы утомления оператора является установление соответствующих режимов труда.

При распределении работ в течение недели следует учитывать, что работоспособность увеличивается в первые дни недели, достигает наивысшего уровня на третий-четвертый день, а затем снижается.

Распределение работ в течение смены должно учитывать, что период вырабатывания у операторов ПК составляет от 10 до 40 минут (в послеобеденное время период вырабатывания сокращается). Период устойчивой работоспособности продолжается около двух часов; период наступления утомления и спада работоспособности наступает после 1,5-2,0 часов устойчивой работоспособности (во второй половине рабочего дня период утомления более выражен).

Режимы труда и отдыха при работе с ПК в течение смены должны организовываться в зависимости от вида и категории трудовой деятельности.

Виды трудовой деятельности разделяются на 3 группы:

а) группа А -- работа по считыванию информации с экрана ПК с предварительным запросом;

б) группа Б -- работа по вводу информации;

в) группа В -- творческая работа в режиме диалога.

При выполнении в течение рабочей смены работ, относящихся к разным видам трудовой деятельности, за основную работу с ПК следует принимать такую, которая занимает не менее 50% времени в течение рабочей смены или рабочего дня.

Для видов трудовой деятельности устанавливается 3 категории тяжести и напряженности работы с ПК, которые определяются:

а) для группы А -- по суммарному числу считываемых знаков за рабочую смену, но не более 60 000 знаков за смену;

б) для группы Б -- по суммарному числу считываемых или вводимых знаков за рабочую смену, но не более 40 000 знаков за смену;

в) для группы В -- по суммарно времени непосредственной работы с ПК за рабочую смену, но не более 6 часов за смену.

Количество перерывов на отдых в принципе должно соответствовать количеству выраженных физиологических спадов функционирования тем организма, возникающих при утомлении во время трудового процесса. Лучше всего подойти к этому вопросу сугубо индивидуально и провести соответствующие исследования. А в общем случае время регламентированных перерывов в течение рабочей смены устанавливается в зависимости от ее продолжительности, вида и категории трудовой деятельности (таблица 5.2).

Таблица 5.2 - Время регламентированных перерывов в зависимости от продолжительности рабочей смены, вида и категории трудовой деятельности с ПК

Категория работы с ПК

Уровень нагрузки за рабочую смену при видах работ с ПК

Суммарное время регламентированных перерывов, мин.

группа А, кол-во знаков

группа Б, кол-во знаков

группа В, час.

при 8-часовой смене

при 12-часовой смене

I

до 20000

до 15000

до 2,0

30

70

II

до 40000

до 30000

до 4,0

50

90

III

до 60000

до 40000

до 6,0

70

120

Время перерывов дано при соблюдении оптимальных режимов труда, в противном случае время регламентированных перерывов следует увеличить на 30%.

При работе с графическими элементами менее 0,5 мм, длительность сосредоточенного наблюдения должна быть не более 50% времени смены.

Продолжительность непрерывной работы с ПК без регламентированного перерыва не должна превышать 2 часов.

При многосменной работе, что актуально для диспетчеров, да и взаимоотношения с Internet часто вынуждают к такому режиму, физиологически рациональное время начала и окончания работы смены находится в следующих интервалах: 6 - 8 часов, 14 - 16 часов, 0 - 4 часа.

При работе с ПК в ночную смену (с 22 до 6 часов), независимо от категории и вида трудовой деятельности, продолжительность регламентированных перерывов должна увеличиваться на 60 минут. При 8-часовой рабочей смене и работе на ПК регламентированные перерывы следует устанавливать:

а) I категория работ - через 2 часа от начала рабочей смены и через 2 часа после обеденного перерыва продолжительностью 15 минут каждый;

б) II категория работ - через 2 часа от начала рабочей смены и через 1,5 - 2 часа после обеденного перерыва продолжительностью 15 минут каждый или продолжительностью 10 минут через каждый час работы;

в) III категория работ - через 1,5 - 2 часа от начала рабочей смены и через 1,5 - 2 часа после обеденного перерыва продолжительностью 20 минут каждый или продолжительность 15 минут через каждый час работы.

При 12-часовой рабочей смене регламентированные перерывы должны устанавливаться в первые 8 часов работы аналогично перерывам при 8-часой рабочей смене, а в течение последних 4 часов работы, независимо от категории и вида работ, каждый час продолжительностью 15 минут.

При несоблюдении принятых санитарных норм СанПиН 9-131 РБ 2000, а также требований, которых необходимо придерживаться во избежание ошибок, которые может допустить в процессе работы оператор, приводит к психофизиологическим перегрузкам оператора.

6. Обоснование экономической целесообразности разработки ПС “Easy Particles”

6.1 Общая характеристика разрабатываемого ПС ВТ

Особенностью современных бизнес процессов в любой отрасли общественной деятельности является автоматизация сбора и обработки информации для принятия управленческих решений. Вместе с тем, автоматизация невозможна без использования программных продуктов. Решение любой информационной задачи связано с применением не только системных программ, но и разнообразных программных средств - приложений.

Разработка проектов программных средств требует затрат разнообразных и, не редко значительных объемов, ресурсов (трудовых, материальных, финансовых). В связи с этим, разработка и реализация каждого проекта должна быть обоснована, как технически, так и экономически.

Проект стоит разрабатывать, если он дает определенные преимущества по сравнению с известными передовыми аналогами или, в крайнем случае, по сравнению с существующей практикой. Поэтому, до того как приступить к разработке проекта программного средства, специалист должен, использую соответствующие методы, найти наиболее рациональное программное решение, обеспечивающее высокий технический уровень программы и дающее существенную экономию ресурсов, как при разработке проекта в научно-технической организации (у разработчика), так и при его реализации у пользователя (покупателя, заказчика).

Программное средство функционального назначения “Easy Particles” - графический редактор, разработан на C++ с использованием MS Visual Studio 2005 и ряда специализированных библиотек, является ПС 1 группы сложности.

Разрабатываемое программное средство относится к 1-й группе сложности. По степени новизны программный продукт относится к группе “В” с коэффициентом 0,7.

6.2 Расчет цены и прибыли на ПС

В современных рыночных экономических условиях ПС выступает преимущественно в виде продукции организаций, представляющей собой функционально завершенные и имеющие товарный вид ПС ВТ, реализуемые покупателям по рыночным отпускным ценам. Все завершенные разработки ПС ВТ являются научно-технической продукцией.

Широкое применение ВТ требует постоянного обновления и совершенствования ПС. Выбор эффективных проектов ПС связан с их экономической оценкой и расчетом экономического эффекта, который может определяться как у разработчика, так и у пользователя.

У разработчика экономический эффект выступает в виде чистой прибыли от реализации ПС, остающейся в распоряжении организации, а у пользователя - в виде экономии трудовых, материальных и финансовых ресурсов, получаемой за счет:

- снижения трудоемкости расчетов и алгоритмизации программирования и отладки программ за счет использования ПС в процессе разработки автоматизированных систем обработки данных;

- сокращения расходов на оплату машинного времени и других ресурсов на отладку программ;

- снижения расходов на материалы (магнитные ленты, магнитные диски и прочие материалы);

- ускорение ввода в эксплуатацию новых систем;

- улучшения показателей основной деятельности в результате использования ПС.

Стоимостная оценка ПС у разработчиков предполагает определение размеров затрат, что включает следующие статьи:

- заработная плата исполнителей - основная и дополнительная;

- отчисления в фонд социальной защиты населения;

- отчисления по обязательному страхованию от несчастных случаев на производстве и профессиональных заболеваний;

- расходы на материалы и комплектующие;

- расходы на спецоборудование;

- расходы на оплату машинного времени;

- прочие прямые затраты;

- накладные расходы.

На основании затрат рассчитывается себестоимость и отпускная цена ПС.

6.2.1 Исходные данные

Таблица 6.1 - Исходные данные для расчётов

Наименование показателя

Единица измерения

Условные обозначения

Норматив

Коэффициент изменения скорости обработки информации

ед.

Кск

0,7

Численность разработчиков

чел.

Чр

1

Тарифная ставка 1-го разряда в организации

руб.

Сзм1

77000

Тарифный коэффициент

ед.

Кт

2,84

Фонд рабочего времени

ч

ФРВ

169.3

Коэффициент естественных потерь рабочего времени

ед.

Кп

1,4

Коэффициент премирования

ед.

Кпр

1

Норматив дополнительной заработной платы

%

Ндз

10%

Ставка отчислений в Фонд социальной защиты населения

%

Нфсзн

34%

Ставка отчислений по обязательному страхованию от несчастных случаев на производстве и профессиональных заболеваний

%

Нбгс

1%

Цена одного машино-часа

руб.

Цм

2200

Норматив прочих затрат

%

Нпз

12%

Норматив накладных расходов

%

Ннр

120%

Норматив расходов на сопровождение и адаптацию

%

Нрса

10%

Уровень рентабельности

%

Урн

24%

Ставка отчислений по единому нормативу в целевые бюджетные фонды из выручки от реализации

%

Нцбф

1%

Ставка НДС

%

Нндс

18%

Норматив расходов на освоение ПС

%

Нос

1%

Норматив расходов на пополнение оборотных средств в связи с использованием нового ПС

%

Ноб

1%

Ставка налога на прибыль

%

Нnр

24%

Ставка местных налогов и сборов

%

Нмс

3%

Норматив приведения разновременных затрат

ед.

Ен

0,11

Страницы: 1, 2, 3, 4


© 2010 РЕФЕРАТЫ