бесплатные рефераты

Базы данных и информационные технологии

В идеале хотелось бы уметь находить для любого изображения систему аффинных преобразований (IFSM), воспроизводящую изображение с заданной точностью. Однако решение находилось немного в стороне. Первым нашёл его именно студент Барнсли, Арно Жакан (Arnaud Jacquin). Предложенный метод получил название «Система итерируемых кусочно-определённых функций» (Partitioned Iterated Function System - PIFS). Согласно этой схеме, отдельные части изображения подобны не всему изображению, а только его частям.

2. Математические основы фрактального сжатия

Фрактальные методы сжатия позволяют сжать информацию в 10 000 раз. Все известные программы фрактальной компрессии базируются на алгоритме Джеквина - сотрудника Барнсли, который в 1992 году при защите диссертации описал практический алгоритм фрактального сжатия. Несомненным достоинством работы было то, что вмешательство человека в процесс сжатия удалось полностью исключить.

Рассмотрим механизм фрактального сжатия данных. Фрактальная архивация основана на том, что с помощью коэффициентов системы итерируемых функций изображение представляется в более компактной форме. Прежде чем рассматривать процесс архивации, разберем, как IFS строит изображение. Строго говоря, IFS - это набор трехмерных аффинных преобразований, переводящих одно изображение в другое. Преобразованию подвергаются точки в трехмерном пространстве (x координата, у координата, яркость). Наиболее наглядно этот процесс продемонстрировал сам Барнсли в своей книге "Фрактальное сжатие изображения". В ней введено понятие Фотокопировальной Машины, состоящей из экрана, на котором изображена исходная картинка, и системы линз, проецирующих изображение на другой экран. Каждая линза проецирует часть исходного изображения. Расставляя линзы и меняя их характеристики, можно управлять получаемым изображением. На линзы накладывается требование они должны уменьшать в размерах проектируемую часть изображения. Кроме того, они могут менять яркость фрагмента и проецируют не круги, а области с произвольной границей. Одна шаг Машины состоит в построении с помощью проецирования по исходному изображению нового. Утверждается, что на некотором шаге изображение перестанет изменяться. Оно будет зависеть только от расположения и характеристик линз и не будет зависеть от исходной картинки. Это изображение называется неподвижной точкой или аттрактором данной IFS. Collage Theorem гарантирует наличие ровно одной неподвижной точки для каждой IFS. Поскольку отображение линз является сжимающим, каждая линза в явном виде задает самоподобные области в нашем изображении. Благодаря самоподобию мы получаем сложную структуру изображения при любом увеличении. Наиболее известны два изображения, полученных с помощью IFS треугольник Серпинского и папоротник Барнсли Первое задается тремя, а второе - питью аффинными преобразованиями (или, в нашей терминологии, линзами). Каждое преобразование задается буквально считанными байтами, в то время, как изображение, построенное с их помощью, может занимать и несколько мегабайт. Становится понятно, как работает архиватор, и почему ему требуется так много времени. Фактически, фрактальная компрессия - это поиск самоподобных областей в изображении и определение для них параметров аффинных преобразований. В худшем случае, если не будет применяться оптимизирующий алгоритм, потребуется перебор и сравнение всех возможных фрагментов изображения разного размера. Даже для небольших изображений при учете дискретности мы получим астрономическое число перебираемых вариантов. Даже резкое сужение классов преобразований, например, за счет масштабирования только в определенное число раз, не позволит добиться приемлемого времени. Кроме того, при этом теряется качество изображения. Подавляющее большинство исследований в области фрактальной компрессии сейчас направлены на уменьшение времени архивации, необходимого для получения качественного изображения.

Итак, рассмотрим математическое обоснование возможности фрактального сжатия.

Есть отображение , где - множество всех возможных изображений. W является объединением отображений wi:

(1)

где R - изображение, а di - какие-то (возможно, перекрывающиеся) области изображения D. Каждое преобразование wi переводит di в ri. Таким образом:

(2)

Такие отображения называются сжимающими, и для них справедливо следующее утверждение:

Если к какому-то изображению F0 мы начнём многократно применять отображение W таким образом, что

(5)

то в пределе, при i, стремящемся к бесконечности, мы получим одно и то же изображение вне зависимости от того, какое изображение мы взяли в качестве F0:

(6)

Это конечное изображение F называют аттрактором, или неподвижной точкой отображения W. Также известно, что если преобразования wi являются сжимающими, то их объединение W тоже является сжимающим.

3. Типовая схема фрактального сжатия

С учётом вышесказанного, схема компрессии выглядит так: изображение R разбивают на кусочки ri, называемые ранговыми областями. Далее для каждой области ri находят область di и преобразование wi такие, что выполняются следующие условия:

1. di по размерам больше ri.

2. wi (ri) имеет ту же форму, размеры и положение, что и ri.

3. Коэффициент u преобразования wi должен быть меньше единицы.

4. Значение должно быть как можно меньше.

Первые три условия означают, что отображение wi будет сжимающим. А в силу четвёртого условия кодируемое изображение R и его образ W (R) будут похожи друг на друга. В идеале R = W (R). А это означает, что наше изображение R и будет являться неподвижной точкой W. Именно здесь используется подобие различных частей изображения (отсюда и название - «фрактальная компрессия»). Как оказалось, практически все реальные изображения содержат такие похожие друг на друга, с точностью до аффинного преобразования, части.

Таким образом, для компрессии изображения W нужно:

1. Разбить изображение на ранговые области ri (непересекающиеся области, покрывающие все изображение).

2. Для каждой ранговой области ri найти область di (называемую доменной), и отображение wi, с указанными выше свойствами.

3. Запомнить коэффициенты аффинных преобразований W, положения доменных областей di, а также разбиение изображения на домены.

Соответственно, для декомпрессии изображения нужно будет:

1. Создать какое-то (любое) начальное изображение R0.

2. Многократно применить к нему отображение W (объединение wi).

3. Так как отображение W сжимающее, то в результате, после достаточного количества итераций, изображение придёт к аттрактору и перестанет меняться. Аттрактор и является нашим исходным изображением. Декомпрессия завершена.

Именно это и позволяет при развертывании увеличивать его в несколько раз. Особенно впечатляют примеры, в которых при увеличении изображений природных объектов проявляются новые детали, действительно этим объектам присущие (например, когда при увеличении фотографии скалы она приобретает новые, более мелкие неровности).

4. Оценка коэффициента сжатия и вычислительных затрат

Размер данных для полного определения ранговой области рассчитывается по формуле:

(10)

где X - количество бит, необходимых для хранения координат нижнего левого угла домена, T - количество бит, необходимых для хранения типа аффинного преобразования, U и V - для хранения коэффициентов контраста и яркости.

(11)

где Nb и Mb - количество бит, необходимых для хранения каждой из координат, рассчитываются по следующим формулам:

(12)

Здесь CEIL - функция округления до максимального целого, Md и Nd - количество доменов, умещающихся по горизонтали и вертикали, которые рассчитываются по формулам:

(13)

где V и H - вертикальный и горизонтальный размеры изображения, Size - размер доменного блока, Step - шаг поиска доменной области.

Для хранения преобразования T необходимо 3 бита.

Для хранения U и V необходимо 9 и 7 бит соответственно.

Для примера возьмём изображение размером 256x256 пикселей, и будем исследовать доменную область с шагом 4 пикселя.

Nd = Md = (256 - 8 + 1) / 4 = 62

Nb = Mb = CEIL (log2 62) = 6

Х = 12

Z = 12 + 3 + 6 + 6 = 27

Коэффициент сжатия S составляет

S = (8 * 8 * 8) / 27 = 19

Коэффициент сжатия не так велик, как хотелось бы, но и параметры сжатия далеко не оптимальны, и коэффициент может увеличиваться в разы.

А теперь оценим вычислительную сложность данного алгоритма. На этапе компрессии мы должны перебрать все доменные области - 1'024 штуки, для каждой - все ранговые - 58'081 штука (при шаге 1), а для каждой из них, в свою очередь, - все 8 преобразований. Итого получается 1'024 х 58'081 х 8 = 475'799'552 действия. При этом эти действия не тривиальны и включают несколько матричных операций, которые, в свою очередь, включают операции умножения и деления чисел с плавающей точкой.

К сожалению, даже на современном ПК (а именно для таких машин хотелось реализовать алгоритм) понадобится недопустимо много времени для того, чтобы сжать изображение размером всего 256 х 256 пикселов. Очевидно, что рассмотренный алгоритм нуждается в оптимизации.

Лекция 5. Нормальные формы отношений

В процессе проектирования базы данных возникают вопросы: хорошо ли спроектированы отношения между сущностями? Правильно ли они отражают предметную область?

На стадии физической реализации базы данных отношения преобразуются в таблицы, атрибуты становятся столбцами таблиц, для ключевых атрибутов создаются уникальные индексы, домены преображаются в типы данных, принятые в конкретной СУБД.

При этом также возникают вопросы: хорошо ли спроектированы таблицы? Правильно ли выбраны индексы?

Для ответа на этот вопрос необходимо рассмотреть понятие нормальной формы.

Рассмотрим в качестве примера предметной области некоторую организацию, выполняющую проекты. Модель предметной области опишем следующим неформальным текстом:

1. Сотрудники организации выполняют проекты.

2. Проекты состоят из нескольких заданий.

3. Каждый сотрудник может участвовать в одном или нескольких проектах, или временно не участвовать ни в каких проектах.

4. Над каждым проектом может работать несколько сотрудников, или временно проект может быть приостановлен, тогда над ним не работает ни один сотрудник.

5. Над каждым заданием в проекте работает ровно один сотрудник.

6. Каждый сотрудник числится в одном отделе.

7. Каждый сотрудник имеет телефон, находящийся в отделе сотрудника.

8. О каждом сотруднике необходимо хранить табельный номер и фамилию. Табельный номер является уникальным для каждого сотрудника.

9. Каждый отдел имеет уникальный номер.

10. Каждый проект имеет номер и наименование. Номер проекта является уникальным.

11. Каждая работа из проекта имеет номер, уникальный в пределах проекта. Работы в разных проектах могут иметь одинаковые номера.

Начинающий проектировщик будет использовать отношение СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ (Номер сотрудника, ФИО, номер отдела, телефон, номер проекта, название проекта, номер задания), имеющее сложный ключ).

Действительно, зачем разбивать данное отношение на несколько более мелких отношений, если оно заключает в себе все данные? А разбивать надо потому, что при использовании универсального отношения возникает несколько проблем:

1. Проблема избыточности. Даже одного взгляда на отношение СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ достаточно, чтобы увидеть, что данные хранятся в ней с большой избыточностью. Во многих строках повторяются фамилии сотрудников, номера телефонов, наименования проектов. Кроме того, в данном отношении хранятся вместе независимые друг от друга данные - и данные о сотрудниках, и об отделах, и о проектах, и о работах по проектам. Пока никаких действий с отношением не производится, это не страшно. Но как только состояние предметной области изменяется, то, при попытках соответствующим образом изменить состояние базы данных, возникает большое количество проблем.

2. Аномалии обновления. Вследствие избыточности можно обновить телефон отдела для одного сотрудника, оставляя его неизменным в других строках. Следовательно, при обновлениях необходимо просматривать всю таблицу для нахождения и изменения всех подходящих строк. Причина аномалии - избыточность данных, также порожденная тем, что в одном отношении хранится разнородная информация.

Вывод - увеличивается сложность разработки базы данных. База данных, основанная на такой модели, будет работать правильно только при наличии дополнительного программного кода в виде триггеров.

3. Аномалии включения. В отношение СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ нельзя вставить данные о сотруднике, который пока не участвует ни в одном проекте. Действительно, если, например, во втором отделе появляется новый сотрудник, скажем, Пушников, и он пока не участвует ни в одном проекте, то мы должны вставить в отношение кортеж (4, Пушников, 2, 33-22-11, null, null, null). Это сделать невозможно, т.к. атрибут Н_ПРО (номер проекта) входит в состав сложного ключа, и, следовательно, не может содержать null-значений. Точно также нельзя вставить данные о проекте, над которым пока не работает ни один сотрудник.

Причина аномалии - хранение в одном отношении разнородной информации (и о сотрудниках, и о проектах, и о работах по проекту).

Вывод - логическая модель данных неадекватна модели предметной области. База данных, основанная на такой модели, будет работать неправильно.

4. Аномалии удаления. При удалении некоторых данных может произойти потеря другой информации. Например, если закрыть проект "СУЭД" и удалить все строки, в которых он встречается, то будут потеряны все данные о сотруднике Петрове П.П.. Кроме того будет потеряна информация о том, что в отделе номер 2 имеется телефон под номером 25-54-54.

Причина аномалии - хранение в одном отношении разнородной информации (и о сотрудниках, и о проектах, и о работах по проекту).

Вывод - логическая модель данных неадекватна модели предметной области. База данных, основанная на такой модели, будет работать неправильно.

1НФ (Первая Нормальная Форма)

Говорят, что отношение СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ находится в 1НФ.

Первая нормальная форма (1НФ) - это обычное отношение. Любое отношение автоматически уже находится в 1НФ. Свойства 1НФ:

· В отношении нет одинаковых кортежей.

· Кортежи не упорядочены.

· Все значения атрибутов атомарны.

В 1 НФ модель данных не адекватна модели предметной области. Следовательно, первой нормальной формы недостаточно для правильного моделирования данных.

Для устранения указанных аномалий (а на самом деле для правильного проектирования модели данных!) применяется метод нормализации отношений. Нормализация основана на понятии функциональной зависимости атрибутов отношения. Функциональная зависимость - семантическое понятие, она возникает, когда по значениям одних данных в предметной области можно определить значения других данных. Например, зная табельный номер сотрудника, можно определить его фамилию, по номеру отдела можно определить телефона.

В отношении СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ можно привести следующие примеры функциональных зависимостей:

от ключа {Н_СОТР, Н_ПРО} зависят следующие атрибуты ФИО, номер отдела, телефон, название проекта, номер задания;

от номера сотрудника зависят следующие атрибуты ФИО, номер отдела, телефон;

от номера проекта зависит наименование проекта;

от номера отдела зависит номер телефона;

Замечание. Эти зависимости отражают взаимосвязи, обнаруженные между объектами предметной области.

2НФ (Вторая Нормальная Форма)

Отношение находится во второй нормальной форме (2НФ) тогда и только тогда, когда оно находится в 1НФ и нет неключевых атрибутов, зависящих от части сложного ключа. (Неключевой атрибут - это атрибут, не входящий в состав никакого потенциального ключа).

Замечание. Если ключ отношения является простым, то отношение автоматически находится в 2НФ.

Отношение СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ не находится в 2НФ, т.к. есть атрибуты, зависящие от части сложного ключа: зависимость атрибутов, характеризующих сотрудника от табельного номера сотрудника является зависимостью от части сложного ключа, зависимость наименования проекта от номера проекта является зависимостью от части сложного ключа.

Для того, чтобы устранить зависимость атрибутов от части сложного ключа, нужно произвести декомпозицию отношения на несколько отношений. При этом те атрибуты, которые зависят от части сложного ключа, выносятся в отдельное отношение.

Отношение СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ декомпозируем на три отношения - СОТРУДНИКИ_ОТДЕЛЫ, ПРОЕКТЫ, ЗАДАНИЯ.

Отношение СОТРУДНИКИ_ОТДЕЛЫ (Н_СОТР, ФИО, Н_ОТД, ТЕЛ):

Функциональные зависимости:

Зависимость атрибутов, характеризующих сотрудника от табельного номера сотрудника:

Н_СОТР ФАМ, Н_ОТД, ТЕЛ

Зависимость номера телефона от номера отдела:

Н_ОТД ТЕЛ

Н_СОТР

ФАМ

Н_ОТД

ТЕЛ

1

Иванов

1

25-45-45

2

Сидоров

1

25-45-45

3

Петров

2

25-54-54

Отношение ПРОЕКТЫ (Н_ПРО, ПРОЕКТ):

Функциональные зависимости:

Н_ПРО ПРОЕКТ

Н_ПРО

ПРОЕКТ

1

СУЭД

2

Разработка ИС «Архив»

Отношение ЗАДАНИЯ (Н_СОТР, Н_ПРО, Н_ЗАДАН):

Функциональные зависимости:

{Н_СОТР, Н_ПРО} Н_ЗАДАН

Н_СОТР

Н_ПРО

Н_ЗАДАН

1

1

1

2

1

2

3

1

3

1

2

1

2

2

2

Отношения, полученные в результате декомпозиции, находятся в 2НФ. Действительно, отношения СОТРУДНИКИ_ОТДЕЛЫ и ПРОЕКТЫ имеют простые ключи, следовательно автоматически находятся в 2НФ, отношение ЗАДАНИЯ имеет сложный ключ, но единственный неключевой атрибут Н_ЗАДАН функционально зависит от всего ключа {Н_СОТР, Н_ПРО}.

Часть аномалий обновления устранена. Так, данные о сотрудниках и проектах теперь хранятся в различных отношениях, поэтому при появлении сотрудников, не участвующих ни в одном проекте просто добавляются кортежи в отношение СОТРУДНИКИ_ОТДЕЛЫ. Точно также, при появлении проекта, над которым не работает ни один сотрудник, просто вставляется кортеж в отношение ПРОЕКТЫ.

Фамилии сотрудников и наименования проектов теперь хранятся без избыточности. Если сотрудник сменит фамилию или проект сменит наименование, то такое обновление будет произведено единожды.

Тем не менее, часть аномалий разрешить не удалось.

1. В отношение СОТРУДНИКИ_ОТДЕЛЫ нельзя вставить кортеж (4, Пушников П.П., 1, 33-22-11), т.к. при этом получится, что два сотрудника из 1-го отдела (Иванов и Пушников) имеют разные номера телефонов, а это противоречит модели предметной области. В этой ситуации можно предложить два решения, в зависимости от того, что реально произошло в предметной области. Другой номер телефона может быть введен по двум причинам - по ошибке человека, вводящего данные о новом сотруднике, или потому что номер в отделе действительно изменился.

Причина аномалии - избыточность данных, порожденная тем, что в одном отношении хранится разнородная информация (о сотрудниках и об отделах).

Вывод - увеличивается сложность разработки базы данных. База данных, основанная на такой модели, будет работать правильно только при наличии дополнительного программного кода в виде триггеров.

2. Одни и те же номера телефонов повторяются во многих кортежах отношения. Поэтому если в отделе меняется номер телефона, то такие изменения необходимо одновременно выполнить во всех местах, где этот номер телефона встречаются, иначе отношение станет некорректным. Таким образом, обновление базы данных одним действием реализовать невозможно. Необходимо написать триггер, который при обновлении одной записи корректно исправляет номера телефонов в других местах.

Причина аномалии - избыточность данных, также порожденная тем, что в одном отношении хранится разнородная информация.

Вывод - увеличивается сложность разработки базы данных. База данных, основанная на такой модели, будет работать правильно только при наличии дополнительного программного кода в виде триггеров.

3. При удалении некоторых данных по-прежнему может произойти потеря другой информации. Например, если удалить сотрудника Петрова П.П., то будет потеряна информация о том, что в отделе номер 2 находится телефон 25-54-54.

Причина аномалии - хранение в одном отношении разнородной информации (и о сотрудниках, и об отделах).

Вывод - логическая модель данных неадекватна модели предметной области. База данных, основанная на такой модели, будет работать неправильно.

Заметим, что при переходе ко второй нормальной форме отношения стали почти адекватными предметной области.

3НФ (Третья Нормальная Форма)

Атрибуты называются взаимно независимыми, если ни один из них не является функционально зависимым от другого.

Отношение находится в третьей нормальной форме (3НФ) тогда и только тогда, когда отношение находится в 2НФ и все неключевые атрибуты взаимно независимы.

Отношение СОТРУДНИКИ_ОТДЕЛЫ не находится в 3НФ, т.к. имеется функциональная зависимость неключевых атрибутов (зависимость номера телефона от номера отдела):

Для того, чтобы устранить зависимость неключевых атрибутов, нужно вновь произвести декомпозицию отношения на несколько отношений. При этом те неключевые атрибуты, которые являются зависимыми, выносятся в отдельное отношение.

Отношение СОТРУДНИКИ_ОТДЕЛЫ декомпозируем на два отношения - СОТРУДНИКИ, ОТДЕЛЫ.

Отношение СОТРУДНИКИ (Н_СОТР, ФИО, Н_ОТД):

Функциональные зависимости:

Зависимость атрибутов, характеризующих сотрудника от табельного номера сотрудника:

Н_СОТР ФАМ, Н_ОТД, ТЕЛ

Н_СОТР

ФАМ

Н_ОТД

1

Иванов

1

2

Сидоров

1

3

Петров

2

Отношение ОТДЕЛЫ (Н_ОТД, ТЕЛ):

Функциональные зависимости: зависимость номера телефона от номера отдела.

Н_ОТД

ТЕЛ

1

25-45-45

2

25-54-54

Обратим внимание на то, что атрибут Н_ОТД, не являвшийся ключевым в отношении СОТРУДНИКИ_ОТДЕЛЫ, становится ключом в отношении ОТДЕЛЫ. Именно за счет этого устраняется избыточность, связанная с многократным хранением одних и тех же номеров телефонов.

Вывод. Таким образом, все обнаруженные аномалии обновления устранены. Реляционная модель, состоящая из четырех отношений СОТРУДНИКИ, ОТДЕЛЫ, ПРОЕКТЫ, ЗАДАНИЯ, находящихся в третьей нормальной форме, является адекватной описанной модели предметной области.

Алгоритм нормализации (приведение к 3НФ)

Итак, алгоритм нормализации (т.е. алгоритм приведения отношений к 3НФ) описывается следующим образом.

Шаг 1 (Приведение к 1НФ). На первом шаге задается одно или несколько отношений, отображающих понятия предметной области. По модели предметной области выписываются обнаруженные функциональные зависимости. Все отношения автоматически находятся в 1НФ.

Шаг 2 (Приведение к 2НФ). Если в некоторых отношениях обнаружена зависимость атрибутов от части сложного ключа, то проводим декомпозицию этих отношений на несколько отношений следующим образом: те атрибуты, которые зависят от части сложного ключа выносятся в отдельное отношение вместе с этой частью ключа. В исходном отношении остаются все ключевые атрибуты:

Шаг 3 (Приведение к 3НФ). Если в некоторых отношениях обнаружена зависимость некоторых неключевых атрибутов других неключевых атрибутов, то проводим декомпозицию этих отношений следующим образом: те неключевые атрибуты, которые зависят других неключевых атрибутов выносятся в отдельное отношение. В новом отношении ключом становится детерминант функциональной зависимости:

Замечание. На практике, при создании логической модели данных, как правило, не следуют прямо приведенному алгоритму нормализации. Опытные разработчики обычно сразу строят отношения в 3НФ. Кроме того, основным средством разработки логических моделей данных являются различные варианты ER-диаграмм. Особенность этих диаграмм в том, что они сразу позволяют создавать отношения в 3НФ. Тем не менее, приведенный алгоритм важен по двум причинам. Во-первых, этот алгоритм показывает, какие проблемы возникают при разработке слабо нормализованных отношений. Во-вторых, как правило, модель предметной области никогда не бывает правильно разработана с первого шага. Эксперты предметной области могут забыть о чем-либо упомянуть, разработчик может неправильно понять эксперта, во время разработки могут измениться правила, принятые в предметной области, и т.д. Все это может привести к появлению новых зависимостей, которые отсутствовали в первоначальной модели предметной области. Тут как раз и необходимо использовать алгоритм нормализации хотя бы для того, чтобы убедиться, что отношения остались в 3НФ и логическая модель не ухудшилась.

В большинстве случаев 3НФ достаточно, чтобы разрабатывать вполне работоспособные базы данных. Однако существуют нормальные формы более высоких порядков, а именно, нормальная форма Бойса-Кодда (НФБК), четвертая нормальная форма (4НФ), пятая нормальная форма (5НФ).

НФБК (Нормальная Форма Бойса-Кодда)

При приведении отношений при помощи алгоритма нормализации к отношениям в 3НФ неявно предполагалось, что все отношения содержат один потенциальный ключ. Это не всегда верно. Рассмотрим следующий пример отношения, содержащего два ключа.

Пример 1. Пусть требуется хранить данные о поставках товаров некоторыми поставщиками. Предположим, что наименования поставщиков являются уникальными. Кроме того, каждый поставщик имеет свой уникальный номер. Данные о поставках можно хранить в следующем отношении:

Номер поставщика PNUM

Наименование поставщика PNAME

Номер товара DNUM

Поставляемое количество VOLUME

1

Фирма 1

1

100

1

Фирма 1

2

200

1

Фирма 1

3

300

2

Фирма 2

1

150

2

Фирма 2

2

250

3

Фирма 3

1

1000

Данное отношение содержит два потенциальных ключа - {PNUM, DNUM} и {PNAME, DNUM}. Видно, что данные хранятся в отношении с избыточностью - при изменении наименования поставщика, это наименование нужно изменить во всех кортежах, где оно встречается. Можно ли эту аномалию устранить при помощи алгоритма нормализации, описанного в предыдущей главе? Для этого нужно выявить имеющиеся функциональные зависимости:

- наименование поставщика зависит от номера поставщика.

- номер поставщика зависит от наименования поставщика.

- поставляемое количество зависит от первого ключа отношения.

- наименование поставщика зависит от первого ключа отношения.

- поставляемое количество зависит от второго ключа отношения.

- номер поставщика зависит от второго ключа отношения.

Данное отношение не содержит неключевых атрибутов, зависящих от части сложного ключа. Действительно, от части сложного ключа зависят атрибуты PNAME и PNUM, но они сами являются ключевыми. Таким образом, отношение находится в 2НФ.

Кроме того, отношение не содержит зависимых друг от друга неключевых атрибутов, т.к. неключевой атрибут всего один - VOLUME. Таким образом, показано, что отношение "Поставки" находится в 3НФ.

Таким образом, описанный ранее алгоритм нормализации неприменим к данному отношению. Очевидно, однако, что аномалия данного отношения устраняется путем декомпозиции его на два следующих отношения:

Таблица 2 - Отношение "Поставщики"

Номер поставщика PNUM

Наименование поставщика PNAME

1

Фирма 1

2

Фирма 2

3

Фирма 3

Таблица 3 - Отношение "Поставки-2"

Номер поставщика PNUM

Номер детали DNUM

Поставляемое количество VOLUME

1

1

100

1

2

200

1

3

300

2

1

150

2

2

250

3

1

1000

Определение 1. Отношение находится в нормальной форме Бойса-Кодда (НФБК) тогда и только тогда, когда детерминанты всех функциональных зависимостей являются потенциальными ключами.

Замечание. Если отношение находится в НФБК, то оно автоматически находится и в 3НФ. Действительно, это сразу следует из определения 3НФ.

Отношение "Поставки" не находится в НФБК, т.к. имеются зависимости (PNUM PNAME и PNAME PNUM), детерминанты которых не являются потенциальными ключами.

Для того чтобы устранить зависимость от детерминантов, не являющихся потенциальными ключами, необходимо провести декомпозицию, вынося эти детерминанты и зависимые от них части в отдельное отношение. Отношения "Поставщики" и "Поставки-2", полученные в результате декомпозиции находятся в НФБК.

Замечание. Приведенная декомпозиция отношения "Поставки" на отношения "Поставщики" и "Поставки-2" не является единственно возможной. Альтернативной декомпозицией является декомпозиция на следующие отношения:

Страницы: 1, 2, 3, 4, 5, 6, 7


© 2010 РЕФЕРАТЫ