бесплатные рефераты

Базы данных и информационные технологии

Стадия 1. Выполнение одиночного оператора SELECT

Если в операторе присутствуют ключевые слова UNION, EXCEPT и INTERSECT, то запрос разбивается на несколько независимых запросов, каждый из которых выполняется отдельно:

Шаг 1 (FROM). Вычисляется прямое декартовое произведение всех таблиц, указанных в обязательном разделе FROM. В результате шага 1 получаем таблицу A.

Шаг 2 (WHERE). Если в операторе SELECT присутствует раздел WHERE, то сканируется таблица A, полученная при выполнении шага 1. При этом для каждой строки из таблицы A вычисляется условное выражение, приведенное в разделе WHERE. Только те строки, для которых условное выражение возвращает значение TRUE, включаются в результат. Если раздел WHERE опущен, то сразу переходим к шагу 3. Если в условном выражении участвуют вложенные подзапросы, то они вычисляются в соответствии с данной концептуальной схемой. В результате шага 2 получаем таблицу B.

Шаг 3 (GROUP BY). Если в операторе SELECT присутствует раздел GROUP BY, то строки таблицы B, полученной на втором шаге, группируются в соответствии со списком группировки, приведенным в разделе GROUP BY. Если раздел GROUP BY опущен, то сразу переходим к шагу 4. В результате шага 3 получаем таблицу С.

Шаг 4 (HAVING). Если в операторе SELECT присутствует раздел HAVING, то группы, не удовлетворяющие условному выражению, приведенному в разделе HAVING, исключаются. Если раздел HAVING опущен, то сразу переходим к шагу 5. В результате шага 4 получаем таблицу D.

Шаг 5 (SELECT). Каждая группа, полученная на шаге 4, генерирует одну строку результата следующим образом. Вычисляются все скалярные выражения, указанные в разделе SELECT. По правилам использования раздела GROUP BY, такие скалярные выражения должны быть одинаковыми для всех строк внутри каждой группы. Для каждой группы вычисляются значения агрегатных функций, приведенных в разделе SELECT. Если раздел GROUP BY отсутствовал, но в разделе SELECT есть агрегатные функции, то считается, что имеется всего одна группа. Если нет ни раздела GROUP BY, ни агрегатных функций, то считается, что имеется столько групп, сколько строк отобрано к данному моменту. В результате шага 5 получаем таблицу E, содержащую столько колонок, сколько элементов приведено в разделе SELECT и столько строк, сколько отобрано групп.

Стадия 2. Выполнение операций UNION, EXCEPT, INTERSECT

Если в операторе SELECT присутствовали ключевые слова UNION, EXCEPT и INTERSECT, то таблицы, полученные в результате выполнения 1-й стадии, объединяются, вычитаются или пересекаются.

Стадия 3. Упорядочение результата

Если в операторе SELECT присутствует раздел ORDER BY, то строки полученной на предыдущих шагах таблицы упорядочиваются в соответствии со списком упорядочения, приведенном в разделе ORDER BY.

Как на самом деле выполняется оператор SELECT

Если внимательно рассмотреть приведенный выше концептуальный алгоритм вычисления результата оператора SELECT, то сразу понятно, что выполнять его непосредственно в таком виде чрезвычайно накладно. Даже на самом первом шаге, когда вычисляется декартово произведение таблиц, приведенных в разделе FROM, может получиться таблица огромных размеров, причем практически большинство строк и колонок из нее будет отброшено на следующих шагах.

На самом деле в РСУБД имеется оптимизатор, функцией которого является нахождение такого оптимального алгоритма выполнения запроса, который гарантирует получение правильного результата.

Схематично работу оптимизатора можно представить в виде последовательности нескольких шагов:

Шаг 1 (Синтаксический анализ). Поступивший запрос подвергается синтаксическому анализу. На этом шаге определяется, правильно ли вообще (с точки зрения синтаксиса SQL) сформулирован запрос. В ходе синтаксического анализа вырабатывается некоторое внутренне представление запроса, используемое на последующих шагах.

Шаг 2 (Преобразование в каноническую форму). Запрос во внутреннем представлении подвергается преобразованию в некоторую каноническую форму. При преобразовании к канонической форме используются как синтаксические, так и семантические преобразования. Синтаксические преобразования (например, приведения логических выражений к конъюнктивной или дизъюнктивной нормальной форме, замена выражений "x AND NOT x" на "FALSE", и т.п.) позволяют получить новое внутренне представление запроса, синтаксически эквивалентное исходному, но стандартное в некотором смысле. Семантические преобразования используют дополнительные знания, которыми владеет система, например, ограничения целостности. В результате семантических преобразований получается запрос, синтаксически не эквивалентный исходному, но дающий тот же самый результат.

Шаг 3 (Генерация планов выполнения запроса и выбор оптимального плана). На этом шаге оптимизатор генерирует множество возможных планов выполнения запроса. Каждый план строится как комбинация низкоуровневых процедур доступа к данным из таблиц, методам соединения таблиц. Из всех сгенерированных планов выбирается план, обладающий минимальной стоимостью. При этом анализируются данные о наличии индексов у таблиц, статистических данных о распределении значений в таблицах, и т.п. Стоимость плана это, как правило, сумма стоимостей выполнения отдельных низкоуровневых процедур, которые используются для его выполнения. В стоимость выполнения отдельной процедуры могут входить оценки количества обращений к дискам, степень загруженности процессора и другие параметры.

Шаг 4. (Выполнение плана запроса). На этом шаге план, выбранный на предыдущем шаге, передается на реальное выполнение.

Во многом качество конкретной СУБД определяется качеством ее оптимизатора. Хороший оптимизатор может повысить скорость выполнения запроса на несколько порядков. Качество оптимизатора определяется тем, какие методы преобразований он может использовать, какой статистической и иной информацией о таблицах он располагает, какие методы для оценки стоимости выполнения плана он знает.

Реализация реляционной алгебры средствами оператора SELECT (Реляционная полнота SQL)

Для того, чтобы показать, что язык SQL является реляционно полным, нужно показать, что любой реляционный оператор может быть выражен средствами SQL. На самом деле достаточно показать, что средствами SQL можно выразить любой из примитивных реляционных операторов.

Оператор декартового произведения

Реляционная алгебра:

Оператор SQL:

SELECT A.Поле1, A.Поле2, …, B.Поле1, B.Поле2, …

FROM A, B;

или

SELECT A.Поле1, A.Поле2, …, B.Поле1, B.Поле2, …

FROM A CROSS JOIN B;

Оператор проекции

Реляционная алгебра:

Оператор SQL:

SELECT DISTINCT X, Y, …, Z

FROM A;

Оператор выборки

Реляционная алгебра: ,

Оператор SQL:

SELECT *

FROM A

WHERE c;

Оператор объединения

Реляционная алгебра:

Оператор SQL:

SELECT *

FROM A

UNION

SELECT *

FROM B;

Оператор вычитания

Реляционная алгебра:

Оператор SQL:

SELECT *

FROM A

EXCEPT

SELECT *

FROM B

Реляционный оператор переименования RENAME выражается при помощи ключевого слова AS в списке отбираемых полей оператора SELECT. Таким образом, язык SQL является реляционно полным.

Остальные операторы реляционной алгебры (соединение, пересечение, деление) выражаются через примитивные, следовательно, могут быть выражены операторами SQL. Тем не менее, для практических целей приведем их.

Оператор соединения

Реляционная алгебра:

Оператор SQL:

SELECT A.Поле1, A.Поле2, …, B.Поле1, B.Поле2, …

FROM A, B

WHERE c;

или

SELECT A.Поле1, A.Поле2, …, B.Поле1, B.Поле2, …

FROM A CROSS JOIN B

WHERE c;

Оператор пересечения

Реляционная алгебра:

Оператор SQL:

SELECT *

FROM A

INTERSECT

SELECT *

FROM B;

Оператор деления

Реляционная алгебра:

Оператор SQL:

SELECT DISTINCT A.X

FROM A

WHERE NOT EXIST

(SELECT *

FROM B

WHERE NOT EXIST

(SELECT *

FROM A A1

WHERE

A1.X = A.X AND

A1.Y = B.Y));

Замечание. Оператор SQL, реализующий деление отношений трудно запомнить, поэтому дадим пример эквивалентного преобразования выражений, представляющих суть запроса.

Пусть отношение A содержит данные о поставках деталей, отношение B содержит список всех деталей, которые могут поставляться. Атрибут X является номером поставщика, атрибут Y является номером детали.

Разделить отношение A на отношение B означает в данном примере "отобрать номера поставщиков, которые поставляют все детали".

Преобразуем текст выражения:

"Отобрать номера поставщиков, которые поставляют все детали" эквивалентно

"Отобрать те номера поставщиков из таблицы A, для которых не существует непоставляемых деталей в таблице B" эквивалентно

"Отобрать те номера поставщиков из таблицы A, для которых не существует тех номеров деталей из таблицы B, которые не поставляются этим поставщиком" эквивалентно

"Отобрать те номера поставщиков из таблицы A, для которых не существует тех номеров деталей из таблицы B, для которых не существует записей о поставках в таблице A для этого поставщика и этой детали".

Последнее выражение дословно переводится на язык SQL. При переводе выражения на язык SQL нужно учесть, что во внутреннем подзапросе таблица A должна быть переименована, для того чтобы отличать ее от экземпляра этой же таблицы, используемой во внешнем запросе.

Выводы

Фактически стандартным языком доступа к базам данных в настоящее время стал язык SQL (Structured Query Language).

Язык SQL оперирует терминами, несколько отличающимися от терминов реляционной теории, например, вместо "отношений" используются "таблицы", вместо "кортежей" - "строки", вместо "атрибутов" - "колонки" или "столбцы".

Стандарт языка SQL, хотя и основан на реляционной теории, но во многих местах отходит он нее.

Основу языка SQL составляют операторы, условно разбитые не несколько групп по выполняемым функциям:

· Операторы DDL (Data Definition Language) - операторы определения объектов базы данных.

· Операторы DML (Data Manipulation Language) - операторы манипулирования данными.

· Операторы защиты и управления данными, и др.

Одним из основных операторов DML является оператор SELECT, позволяющий извлекать данные из таблиц и получать ответы на различные запросы. Оператор SELECT содержит в себе все возможности реляционной алгебры. Это означает, что любой оператор реляционной алгебры может быть выражен при помощи подходящего оператора SELECT. Этим доказывается реляционная полнота языка SQL.

Различают концептуальную схему выполнения оператора SELECT и фактическую схему его выполнения. Концептуальная схема описывает, в какой логической последовательности должны выполняться операции, чтобы получить результат. При реальном выполнении оператора SELECT на первый план выступает достижение максимальной скорости выполнения запроса. Для этого используется оптимизатор, который, анализируя различные планы выполнения запроса, выбирает наилучший из них.

Лекция 6. Современные направления исследований и разработок баз данных

Концепция хранилища данных определяет процесс сбора, отсеивания, предварительной обработки и накопления данных с целью

· долговременного хранения данных (1);

· предоставления результирующей информации пользователям в удобной форме для статистического анализа и создания аналитических отчетов (2).

Концепция OLAP - концепция комплексного многомерного анализа данных, накопленных в хранилище. Теоретически средства OLAP можно применять и непосредственно к оперативным данным или их точным копиям (чтобы не мешать оперативным пользователям). Но в этом случае мы рискуем наступить на свои грабли, поскольку беремся анализировать оперативные данные, которые напрямую для анализа непригодны.

Замечание: термин OLAP очень популярен в настоящее время и OLAP-системой зачастую называют любую DSS-систему, основанную на концепции хранилищ данных и обеспечивающих малое время выполнение (On-Line) аналитических запросов, не зависимо от того, используется ли многомерный анализ данных. Что не совсем верно.

Концепция хранилища данных

Какова побудительная причина появление концепции хранилищ данных?

Казалось бы, зачем строить хранилища данных - ведь они содержат заведомо избыточную информацию, которая и так имеется в базах или файлах оперативных систем? Ответить можно кратко: анализировать данные оперативных систем напрямую невозможно или очень затруднительно. Это объясняется рядом причинами, в том числе

· разрозненностью данных (OLTP-системы, текстовые отчеты, xls-файлы);

· хранением их в форматах различных СУБД и в разных узлах корпоративной сети.

Но даже если на предприятии все данные хранятся на центральном сервере БД (что бывает крайне редко), аналитик почти наверняка не разберется в их сложных, подчас запутанных структурах.

Есть и еще одна причина, оправдывающая появление отдельного хранилища - сложные аналитические запросы к оперативной информации тормозят текущую работу компании, надолго блокируя таблицы и захватывая ресурсы сервера.

Можно констатировать, что практически в любой организации сложилась парадоксальная ситуация: - информация вроде бы, где-то и есть, её даже слишком много, но она неструктурированна, несогласованна, разрознена, не всегда достоверна, её практически невозможно найти и получить. В результате можно говорить об отсутствие информации при наличии и даже избытке.

Для того, чтобы извлекать полезную информацию из данных, они должны быть организованы способом, отличным от принятого в OLTP-системах Почему?

1. В OLTP-системах используются нормализованные таблицы базы данных. Нормализация эффективна, если отношения часто перестраиваются (вставка,. . .), но дает отрицательный эффект в случае операции выборки (особенно в случае сложных запросов). А в DSS-системах только операции выборки, и данные редко меняются, поэтому данные целесообразно хранить в виде слабо нормализованных отношений, содержащих заранее вычисленные основные итоговые данные. Большая избыточность и связанные с ней проблемы тут не страшны, т.к. обновление происходит только в момент загрузки новой порции данных. При этом происходит как добавление новых данных, так и пересчет итогов.

2. Выполнение некоторых аналитических запросов требует хронологической упорядоченности данных. Реляционная модель не предполагает существования порядка записей в таблицах.

3. В случае аналитических запросов чаще используются не детальные, а обобщенные (агрегированные данные).

В результате данные, применяемые для анализа, стали выделять в отдельные специальные базы данных, впоследствии получивших название хранилищ данных (Data Warehouse).

Хранилище данных (определение Билла Инмона(Bill Inmon)) - предметно-ориентированный, интегрированный, привязанный ко времени и неизменяемый набор данных, предназначенный для поддержки принятия решений. Базовые требования к хранилищу данных:

· Ориентация на предметную область. Хранилище должно разрабатываться с учетом специфики предметной области (клиенты, товары, продажи), а не прикладных областей деятельности (выписка счетов, контроль запасов, продажа товаров).

· Интегрированность и внутренняя непротиворечивость. Поскольку данные в хранилище поступают из разных источников (OLTP-системы, архивы и пр.), необходимо привести их к единому формату (дата: 5 января, 5.01,:). В процессе загрузки хранилища должна быть обеспечена, очистка и согласованность данных.

· Привязка ко времени. Учет хронологии достигается введением атрибутов "Дата" и "Время". Упорядочение по этим атрибутам позволяет сократить время выполнения аналитических запросов.

· Неизменяемость. Данные не обновляются в оперативном режиме, а лишь регулярно пополняются из систем оперативной обработки по заданной дисциплине.

· Поддержка высокой скорости получения данных из хранилища.

· Возможность получения и сравнения так называемых срезов данных (slice and dice);

· Полнота и достоверность хранимых данных;

· Поддержка качественного процесса пополнения данных.

OLAP-технология

Термин OLAP был предложен в 1993 г. Эдвардом Коддом (E. Codd - автор реляционной модели данных) По Коду OLAP-технология - это технология комплексного динамического синтеза, анализа и консолидации больших объемов многомерных данных. Он же сформулировал 12 принципов OLAP, которые позже были переработано в так называемый тест FASMI:

· Fast (быстрый) - предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;

· Analysis (анализ) - возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;

· Shared (разделяемой) - многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;

· Multidimensional (многомерной) - многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (ключевое требование OLAP);

· Information (информации) - возможность обращаться к любой нужной информации независимо от ее объема и места хранения.

OLAP-технология представляет для анализа данные в виде многомерных (и, следовательно, нереляционных) наборов данных, называемых многомерными кубами (гиперкуб, метакуб, кубом фактов), оси которого содержат параметры, а ячейки - зависящие от них агрегатные данные

При том гиперкуб является концептуальной логической моделью организации данных, а не физической реализацией их хранения, поскольку храниться такие данные могут и в реляционных таблицах ("реляционные БД были, есть и будут наиболее подходящей технологией для хранения корпорационных данных" - E. Codd).

По Кодду, многомерное концептуальное представление (multi-dimensional conceptual view) представляет собой множественную перспективу, состоящую из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных. Одновременный анализ по нескольким измерениям определяется как многомерный анализ. Осями многомерной системы координат служат основные атрибуты анализируемого бизнес-процесса (то, по чему ведется анализ). Например, для продаж это могут быть тип товара, регион, тип покупателя. В качестве одного из измерений используется время. На пересечениях осей - измерений (dimensions) - находятся данные, количественно характеризующие процесс - меры (measures): суммы и иные агрегатные функции (min, max, avg, дисперсия, ср. отклонение и пр.). Каждое измерение включает направления консолидации данных, состоящие из серии последовательных уровней обобщения (уровней иерархии), где каждый вышестоящий уровень соответствует большей степени агрегации данных по соответствующему измерению (различные уровни их детализации). В этом случае становится возможным произвольный выбор желаемого уровня детализации информации по каждому из измерений.

Благодаря такой модели данных пользователи могут формулировать сложные запросы, генерировать отчеты, получать подмножества данных.

Пример. Трехмерный куб, где в качестве фактов использованы суммы продаж, а в качестве измерений - время, товар и магазин, определенных на разных уровнях группировки: товары группируются по категориям, магазины - по странам, а данные о времени совершения операций - по месяцам.

Значения, "откладываемые" вдоль измерений, называются членами или метками (members). Метки используются в операциях манипулирования измерениями.

Метки могут объединяться в иерархии, состоящие из одного или нескольких уровней детализации (levels). Например, метки измерения "Магазин" (Store) естественно объединяются в иерархию с уровнями:

В соответствии с уровнями иерархии вычисляются агрегатные значения, например объем продаж для USA (уровень "Country") или для штата California (уровень "State"). В одном измерении можно реализовать более одной иерархии - скажем, для времени: {Год, Квартал, Месяц, День} и {Год, Неделя, День}.

Поскольку в рассмотренном примере в общем случае в каждой стране может быть несколько городов, а в городе - несколько клиентов, можно говорить об иерархиях значений в измерении - регион. В этом случае на первом уровне иерархии располагаются страны, на втором - города, а на третьем - клиенты.

Иерархии могут быть сбалансированными (balanced), как, например, иерархия, представленная выше (такова же иерархии, основанные на данных типа "дата-время"), и несбалансированными (unbalanced). Типичный пример несбалансированной иерархии - иерархия типа "начальник-подчиненный".

Иногда для таких иерархий используется термин Parent-child hierarchy.

Существуют также иерархии, занимающие промежуточное положение между сбалансированными и несбалансированными (они обозначаются термином ragged - "неровный"). Обычно они содержат такие члены, логические "родители" которых находятся не на непосредственно вышестоящем уровне (например, в географической иерархии есть уровни Country, City и State, но при этом в наборе данных имеются страны, не имеющие штатов или регионов между уровнями Country и City).

Аналитические OLAP-операции:

· Сечение. При выполнении операции сечения формируется подмножество гиперкуба, в котором значение одного или более измерений фиксировано (значение параметров для фиксированного, например, месяца).

· Вращение (rolling). Операция вращения изменяет порядок представления измерений, обеспечивая представление метакуба в более удобной для восприятия форме.

· Консолидация (rolling up). Включает такие обобщающие операции, как простое суммирование значений (свертка) или расчет с использованием сложных вычислений, включающих другие связанные данные. Например, показателю для отдельных компаний могут быть просто просуммированы с целью получения показателей для каждого города, а показатели для городов могут быть "свернуты" до показателей по отдельным странам.

· Операция спуска (drill doun). Операция, обратная консолидации, которая включает отображение подробных сведений для рассматриваемых консолидированных данных.

· Разбиение с поворотом (slicing and dicing). Позволяет получить представление данных с разных точек зрения. Например, один срез данных о доходах может содержать все сведения о доходах от продаж товаров указанного типа по каждому городу. Другой срез может представлять данные о доходах отдельной компании в каждом из городов.

Поддержка многомерной модели данных и выполнение многомерного анализа данных осуществляются отдельным приложением или процессом, называемым OLAP-сервером. Клиентские приложения могут запрашивать требуемое многомерное представление и в ответ получать те или иные данные. При этом OLAP-серверы могут хранить многомерные данные разными способами

Модели хранилища данных

Обеспечивая многомерное концептуальное представление со стороны пользовательского интерфейса к исходной базе данных, все продукты OLAP делятся на несколько классов по типу исходной БД. Многомерный гиперкуб, используемый в OLAP-технологии, может быть реализован в рамках реляционной модели или существовать как отдельная база данных специальной многомерной структуры. В зависимости от этого принято различать многомерный (MOLAP) и реляционный (ROLAP) подходы к построению хранилища данных.

MOLAP (Multidimensional OLAP)

В MOLAP-модели многомерное представление данных реализуется физически. В специализированных СУБД, основанных на многомерном представлении данных, данные организованы не в форме реляционных таблиц, а в виде упорядоченных многомерных массивов:

1. гиперкубов (все хранимые в базе данных ячейки должны иметь одинаковую размерность, то есть находиться в максимально полном базисе измерений) и

2. поликубов (каждая переменная хранится с собственным набором измерений, и все связанные с этим cложности обработки перекладываются на внутренние механизмы системы).

Использование многомерных баз данных в системах оперативной аналитической обработки имеет следующие достоинства:

· Высокая производительность. В случае использования многомерных СУБД поиск и выборка данных осуществляется значительно быстрее, чем при многомерном концептуальном взгляде на реляционную базу данных, так как многомерная база данных денормализована, содержит заранее агрегированные показатели и обеспечивает оптимизированный доступ к запрашиваемым ячейкам.

· Многомерные СУБД легко справляются с задачами включения в информационную модель разнообразных встроенных функций, тогда как объективно существующие ограничения языка SQL делают выполнение этих задач на основе реляционных СУБД достаточно сложным, а иногда и невозможным.

Недостатки MOLAP-модели:

· Многомерные СУБД не позволяют работать с большими базами данных.

· Многомерные СУБД по сравнению с реляционными очень неэффективно используют внешнюю память. В подавляющем большинстве случаев информационный гиперкуб является сильно разреженным, а поскольку данные хранятся в упорядоченном виде, неопределенные значения удаётся удалить только за счет выбора оптимального порядка сортировки, позволяющего организовать данные в максимально большие непрерывные группы. Но даже в этом случае проблема решается только частично. Кроме того, оптимальный с точки зрения хранения разреженных данных порядок сортировки скорее всего не будет совпадать с порядком, который чаще всего используется в запросах.

Следовательно, использование многомерных СУБД оправдано только при следующих условиях:

1. Объем исходных данных для анализа не слишком велик (не более нескольких гигабайт), то есть уровень агрегации данных достаточно высок.

2. Набор информационных измерений стабилен (поскольку любое изменение в их структуре почти всегда требует полной перестройки гиперкуба).

3. Время ответа системы на нерегламентированные запросы является наиболее критичным параметром.

ПримерыOLAP-серверов, использующих MOLAP-архитектуру: Oracle Express Server фирмы Oracle, IBM Informix MetaCube, IBM DB2 OLAP, Arbor Essbase.

ROLAP (Relational OLAP)

Системы оперативной аналитической обработки реляционных данных (ROLAP) позволяют представлять данные, хранимые в реляционной базе, в многомерной форме, обеспечивая преобразование информации в многомерную модель через промежуточный слой метаданных. В этом случае гиперкуб эмулируется СУБД на логическом уровне.

Для большинства хранилищ данных наиболее эффективным способом моделирования N-мерного куба фактов является схема "звезда" (star schema).

Основными составляющими структуры хранилищ данных являются таблица фактов (fact table) и таблицы измерений (dimension tables).

Таблица фактов является основной таблицей хранилища данных. Как правило, она содержит сведения об объектах или событиях, совокупность которых будет в дальнейшем анализироваться. Если проводить аналогию с многомерной моделью, то строка таблицы фактов соответствует ячейке гиперкуба. Обычно говорят о четырех наиболее часто встречающихся типах фактов. К ним относятся:

· факты, связанные с транзакциями (Transaction facts). Они основаны на отдельных событиях (типичными примерами которых являются телефонный звонок или снятие денег со счета с помощью банкомата);

· факты, связанные с "моментальными снимками" (Snapshot facts). Основаны на состоянии объекта (например, банковского счета) в определенные моменты времени, например на конец дня или месяца. Типичными примерами таких фактов являются объем продаж за день или дневная выручка;

· факты, связанные с элементами документа (Line-item facts). Основаны на том или ином документе (например, счете за товар или услуги) и содержат подробную информацию об элементах этого документа (например, количестве, цене, проценте скидки);

· факты, связанные с событиями или состоянием объекта (Event or state facts). Представляют возникновение события без подробностей о нем (например, просто факт продажи или факт отсутствия таковой без иных подробностей).

Таблица фактов индексируется по сложному ключу, составленному из ключей отдельных изменений. При этом как ключевые, так и некоторые неключевые поля таблицы фактов должны соответствовать будущим измерениям OLAP-куба. Помимо этого таблица фактов содержит одно или несколько числовых полей, на основании которых в дальнейшем будут получены агрегатные данные.

Замечания.

1. Для многомерного анализа пригодны таблицы фактов, содержащие как можно более подробные данные, то есть соответствующие членам нижних уровней иерархии соответствующих измерений.

2. В таблице фактов отсутствуют какие-либо сведения о том, как группировать записи при вычислении агрегатных данных.

Таблица измерений содержит неизменяемые или редко изменяемые данные. В каждой таблице измерений перечислены возможные значения одного из измерений гиперкуба. В подавляющем большинстве случаев эти данные представляют собой по одной записи для каждого члена нижнего уровня иерархии в измерении. Таблицы измерений также содержат как минимум одно описательное поле (обычно с именем члена измерения) и, как правило, целочисленное ключевое поле (обычно это суррогатный ключ) для однозначной идентификации члена измерения. Каждая таблица измерений должна находиться в отношении "один ко многим" с таблицей фактов.

Причина, по которой данная схема названа "звездой" достаточно очевидна. Концы звезды образуются таблицами измерений, а их с таблицей фактов, расположенной в центре, образуют лучи. В терминологии Кодда, каждый луч схемы звезды задает направление консолидации данных по соответствующему измерению.

В схеме "звезда" каждое измерение куба содержится в одной таблице, в том числе и при наличии нескольких уровней иерархии (государство - регион - нас.пункт в таблице "Покупатель", год - месяц - день в таблице "Период").

В сложных задачах с многоуровневыми измерениями используются различные расширения схемы "звезда" - схема "снежинка" (snowflake schema). Это расширение может проявляться в двух разновидностях.

1. В случае большого числа сложных атрибутов в таблице измерений, некоторые атрибуты могут быть детализированы в отдельных таблицах измерений. Иными словами отдельные измерения содержатся не в одной, а в нескольких связанных между собой таблицах. Дополнительные таблицы измерений в такой схеме, обычно соответствующие верхним уровням иерархии измерения и находящиеся в соотношении "один ко многим" в главной таблице измерений, соответствующей нижнему уровню иерархии, иногда называют консольными таблицами (outrigger table).

Например, из таблицы "Покупатель" можно изъять описания региона, населенного пункта (оставив лишь их ключи) и хранить их в отдельных дополнительных таблицах. Это уменьшит степень дублирования информации, но снижает скорость выполнения запросов, поскольку увеличивает степень нормализации. Поэтому даже при наличии иерархических измерений с целью повышения скорости выполнения запросов к хранилищу данных нередко предпочтение отдается схеме "звезда".

2. Другое расширение связано с созданием отдельных таблиц фактов для всех возможных сочетаний уровней обобщения различных измерений.

Увеличение числа таблиц фактов в базе данных может проистекать не только из множественности уровней различных измерений, но и из того обстоятельства, что в общем случае факты имеют разные множества измерений. При абстрагировании от отдельных измерений пользователь должен получать проекцию максимально полного гиперкуба, причем далеко не всегда значения показателей в ней должны являться результатом элементарного суммирования. Таким образом, при большом числе независимых измерений необходимо поддерживать множество таблиц фактов, соответствующих каждому возможному сочетанию выбранных в запросе измерений.

Это позволяет добиться лучшей производительности, но часто приводит к избыточности данных и к значительным усложнениям в структуре базы данных, в которой оказывается огромное количество таблиц фактов

При такой структуре базы данных большинство запросов из области делового анализа объединяют центральную таблицу фактов с одной или несколькими таблицами измерений.

Пример: получить средние объемы продаж товаров каждого поставщика с разбивкой по покупателям и по месяцам.

В любом случае, если многомерная модель реализуется в виде реляционной базы данных, следует создавать длинные и "узкие" таблицы фактов и сравнительно небольшие и "широкие" таблицы измерений. Таблицы фактов содержат численные значения ячеек гиперкуба, а остальные таблицы определяют содержащий их многомерный базис измерений. Часть информации можно получать с помощью динамической агрегации данных, распределенных по незвездообразным нормализованным структурам, хотя при этом следует помнить, что включающие агрегацию запросы при высоконормализованной структуре базы данных могут выполняться довольно медленно.

Достоинства использования реляционных баз данных в системах аналитической оперативной обработки:

1. При использовании ROLAP размер хранилища не является таким критичным параметром, как в случае MOLAP.

2. Внесение изменений в структуру измерений не требует физической реорганизации базы данных, как в случае MOLAP.

3. Реляционные СУБД обеспечивают значительно более высокий уровень защиты данных и хорошие возможности разграничения прав доступа.

Главный недостаток ROLAP по сравнению с многомерными СУБД - меньшая производительность.

Примеры OLAP-серверов, использующих ROLAP-архитектуру: IBM Informix Red Brick, HighGate Project фирмы Sybase, Microsoft SQL Server 2000 Analysis Services фирмы Microsoft.

Другие модели построения хранилищ данных

Гибридные системы (Hybrid OLAP, HOLAP) разработаны с целью совмещения достоинств и минимизации недостатков, присущих предыдущим классам. К этому классу относится Media/MR компании Speedware. По утверждению разработчиков, он объединяет аналитическую гибкость и скорость ответа MOLAP с постоянным доступом к реальным данным, свойственным ROLAP.

Примеры OLAP-серверов, использующих HOLAP-архитектуру: Microsoft SQL Server 2000 Analysis Services фирмы Microsoft, SAS Institute.

Помимо перечисленных средств существует еще один класс - инструменты управляемой среды запросов (MQE), дополненные функциями OLAP или интегрированные с внешними средствами, выполняющими такие функции. Эти хорошо развитые системы осуществляют выборку данных из исходных источников (реляционные базы данных, электронные таблицы), преобразуют их и помещают в динамическую многомерную базу данных, функционирующую на клиентской станции конечного пользователя. Построенный куб данных анализируется средствами многомерного OLAP, сохраняется и сопровождается локально.

Достоинства:

· относительная простота инсталляции, администрирования и сопровождения;

· способность каждого пользователя создавать свои собственные кубы данных.

Основными представителями этого класса являются BusinessObjects одноименной компании, PowerPlay компании Cognos.

Лекция 7. Современные направления исследований и разработок

Конечно, несмотря на всю их привлекательность, классические реляционные системы управления базами данных являются ограниченными. Они идеально походят для таких традиционных приложений, как системы резервирования билетов или мест в гостиницах, а также банковских систем, но их применение в системах автоматизации проектирования, интеллектуальных системах обучения и других системах, основанных на знаниях, часто является затруднительным. Это прежде всего связано с примитивностью структур данных, лежащих в основе реляционной модели данных. Плоские нормализованные отношения универсальны и теоретически достаточны для представления данных любой предметной области. Однако в нетрадиционных приложениях в базе данных появляются сотни, если не тысячи таблиц, над которыми постоянно выполняются дорогостоящие операции соединения, необходимые для воссоздания сложных структур данных, присущих предметной области.

Страницы: 1, 2, 3, 4, 5, 6, 7


© 2010 РЕФЕРАТЫ