Система математических расчетов MATLAB
25.3703 41.4057 68.0281
где каждое число в строке ответов есть результат операции вдоль соответствующего столбца матрицы count. Для определения индекса максимального или минимального элемента нужно в соответствующей функции задать второй выходной параметр. Например, ввод
[mx,indx] = min(count)
mx =
7 9 7
indx =
2 23 24
показывает, что наименьшее число машин за час было зарегестрировано в 2 часа для первого пункта наблюдения (первый столбец) и в 23 и 24 чч. для остальных пунктов наблюдения.
Вы можете вычесть среднее значение из каждого столбца данных, используя внешнее произ-ведение вектора, составленного из единиц и вектора mu (вектора средних значений)
e = ones(24, 1)
x = count - e*mu
Перегруппировка данных может помочь вам в оценке всего набора данных. Так, использование в системе MATLAB в качестве единственного индекса матрицы двоеточия, приводит к представлению этой матрицы как одного длинного вектора, составленного из ее столбцов. Поэтому, для нахождения минимального значения всего множества данных можно ввести
min(count(:))
что приводит к результату
ans =
7
Запись count(:) в данном случае привела к перегруппировке матрицы размера 24х3 в вектор-столбец размера 72х1.
Матрица ковариаций и коэффициенты корреляции
Для статистической обработки в MATLAB-е имеются две основные функции для вычисле-ния ковариации и коэффициентов корреляции:
· cov - В случае вектора данных эта функция выдает дисперсию, то есть меру распреде-
ления (отклонения) наблюдаемой переменной от ее среднего значения. В случае
матриц это также мера линейной зависимости между отдельными переменными,
определяемая недиагональными элементами.
· corrcoef - Коэффициенты корреляции - нормализованная мера линейной вероятност-ной зависимости между перменными.
Применим функцию cov к первому столбцу матрицы count
cov(count(:,1))
Результатом будет дисперсия числа машин на первом пункте наблюдения
ans =
643.6522
Для массива данных, функция cov вычисляет матрицу ковариаций. Дисперсии столбцов мас-сива данных при этом расположены на главной диагонали матрицы ковариаций. Остальные элементы матрицы характеризуют ковариацию между столбцами исходного массива. Для матрицы размера mхn, матрица ковариаций имеет размер n-by-n и является симметричной, то есть совпадает с транспонированной.
Функция corrcoef вычисляет матрицу коэффициентов корреляции для массива данных, где каждая строка есть наблюдение, а каждый столбец - переменная. Коэффициент корреляции - это нормализованная мера линейной зависимости между двумя переменными. Для некор-релированных (линейно-независимых) данных коэффициент корреляции равен нулю; экива-лентные данные имеют единичный коэффициент корреляции. Для матрицы mхn, соответст-вующая матрица коэффициентов корреляции имеет размер nхn. Расположение элементов в матрице коэффициентов корреляции аналогично расположению элементов в рассмотренной выше матрице ковариаций. Для нашего примера подсчета количества машин, при вводе
corrcoef(count)
получим
ans =
1.0000 0.9331 0.9599
0.9331 1.0000 0.9553
0.9599 0.9553 1.0000
Очевидно, здесь имеется сильная линейная корреляция между наблюдениями числа машин в трех различных точках, так как результаты довольно близки к единице.
Конечные разности
MATLAB предоставляет три функции для вычисления конечных разностей.
Функция
|
Описание
|
|
diff
|
Разность между двумя последовательными элементами вектора. Приближенное дифференцирование.
|
|
gradient
|
Приближенное вычисление градиента функции.
|
|
del2
|
Пятиточечная аппроксимация Лапласиана.
|
|
|
Функция diff вычисляет разность между последовательными элементами числового вектора, то есть diff(X) есть [X(2) -X(1) X(3) -X(2) ... X(n) -X(n-1)]. Так, для вектора A,
A = [9 -2 3 0 1 5 4];
diff(A)
MATLAB возвращает
ans =
-11 5 -3 1 4 -1
Помимо вычисления первой разности, функция diff является полезной для определения опре-деленных характеристик вектора. Например, вы можете использовать diff для определения, является ли вектор монотонным (значения элементов или всегда возрастают или убывают), или имеет ли он равные приращения и т.д. Следующая таблица описывает несколько различ-ных путей использования функции diff с одномерным вектором x.
Применение (тест)
|
Описание
|
|
diff(x) == 0
|
Тест на определение повторяющихся элементов
|
|
all(diff(x) > 0)
|
Тест на монотонность
|
|
all(diff(diff(x)) == 0)
|
Тест на опредедление равных приращений
|
|
|
Обработка данных
В данном разделе рассматривается как поступать с:
· Отсутствующими значениями
· Выбросами значений или несовместимыми («неуместными») значениями
Отсутствующие значения
Специальное обозначение NaN, соответствует в MATLAB-е нечисловое значение. В соответ-ствие с принятыми соглашениями NaN является результатом неопределенных выражений та-ких как 0/0. Надлежащее обращение с отсутствующими данными является сложной пробле-мой и зачастую меняется в различных ситуациях. Для целей анализа данных, часто удобно использовать NaN для представления отсутствующих значений или данных которые недос-тупны. MATLAB обращается со значениями NaN единообразным и строгим образом. Эти значения сохраняются в процессе вычислений вплоть до конечных результатов. Любое мате-матическое действие, производимое над значением NaN, в результате также производит NaN. Например, рассмотрим матрицу, содержащую волшебный квадрат размера 3х3, где це-нтральный элемент установлен равным NaN.
a = magic(3); a(2,2) = NaN;
a =
8 1 6
3 NaN 7
4 9 2
Вычислим сумму элементов всех столбцов матрицы:
sum(a)
ans =
15 NaN 15
Любые математические действия над NaN распространяют NaN вплоть до конечного резуль-тата. Перед проведением любых статистических вычислений вам следует удалить все NaN-ы из имеющихся данных. Вот некоторые возможные пути выполнения данной операции.
Программа
|
Описание
|
|
i = find( ~ isnan(x));
x = x(i)
|
Найти индексы всех эементов вектора, не равных
NaN, и затем сохранить только эти элементы
|
|
x = x (find( ~ isnan(x)))
|
Удалить все NaN-ы из вектора
|
|
x = x ( ~ isnan(x));
|
Удалить все NaN-ы из вектора (быстрее).
|
|
x (isnan(x)) = [ ];
|
Удалить все NaN-ы из вектора
|
|
X (any(isnan(X')), :) = [ ];
|
Удалить все строки матрицы X содержащие NaN-ы
|
|
|
Внимание. Для нахождения нечисловых значений NaN вам следует использовать специаль-ную функцию isnan, поскольку при принятом в MATLAB-е соглашении, логическое сравне-ние NaN == NaN всегда выдает 0. Вы не можете использовать запись x(x==NaN) = [ ] для удаления NaN-ов из ваших данных.
Если вам часто приходится удалять NaN-ы, воспользуйтесь короткой программой, записан-ной в виде М-файла.
function X = excise(X)
X(any(isnan(X')),:) = [ ];
Тогда. напечатав
X = excise(X);
вы выполните требуемое действие (excise по английски означает вырезать)
Удаление выбросов значений
Вы можете удалить выбросы значений или несовместимые данные при помощи процедур, весьма схожих с удалением NaN-ов. Для нашей транспортной задачи, с матрицей данных count, средние значения и стандартные (среднеквадратические) отклонения каждого столбца матрицы count равны
mu = mean(count)
sigma = std(count)
mu =
32.0000 46.5417 65.5833
sigma =
25.3703 41.4057 68.0281
Число строк с выбросами значений, превышающими утроенное среднеквадратическое откло-нение от среднего значения можно получить следующим образом:
[n, p] = size(count)
outliers = abs(count - mu(ones(n, 1),:)) > 3*sigma(ones(n, 1),:);
nout = sum(outliers)
nout =
1 0 0
Имеется только один выброс в первом столбце. Удалим все наблюдение при помощи выра-жения
count(any(outliers'),:) = [ ];
Регрессия и подгонка кривых
Часто бывает полезным или необходимым найти функцию, которая описывает взаимосвязь между некоторыми наблюдаемыми (или найденными экспериментально) переменными. Оп-ределение коэффициентов такой функции ведет к решению задачи переопределенной систе-мы линейных уравнений, то есть системы, у которой число уравнений превышает число не-известных. Указанные коэффициенты можно легко найти с использованием оператора обрат-ного деления \ (backslash). Допустим, вы производили измерения переменной y при разных значениях времени t.
t = [0 0.3 0.8 1.1 1.6 2.3]';
y = [0.5 0.82 1.14 1.25 1.35 1.40]';
plot(t,y,'o'); grid on
В следующих разделах мы рассмотрим три способа моделирования (аппроксимации) этих данных:
· Методом полиномиальной регрессии
· Методом линейно-параметрической (linear-in-the-parameters) регрессии
· Методом множественной регрессии
Полиномиальная регрессия
Основываясь на виде графика, можно допустить, что данные могут быть аппроксимированы полиномиальной функцией второго порядка:
y = a0 + a1t + a2t2
Неизвестные коэффициенты a0 , a1 и a2 могут быть найдены методом среднеквадратичес-кой подгонки (аппроксимации), которая основана на минимизации суммы квадратов отклоне-ний данных от модели. Мы имеем шесть уравнений относительно трех неизвестных,
представляемых следующей матрицей 6х3:
X = [ones(size(t)) t t.^2]
X = 1.0000 0 0
1.0000 0.3000 0.0900
1.0000 0.8000 0.6400
1.0000 1.1000 1.2100
1.0000 1.6000 2.5600
1.0000 2.3000 5.2900
Решение находится при помощи оператора \ :
a = X\y
a =
0.5318
0.9191
- 0.2387
Следовательно, полиномиальная модель второго порядка наших данных будет иметь вид
y = 0.5318 + 0.9191t - 0.2387 t2
Оценим теперь значения модели на равноотстоящих точках (с шагом 0.1) и нанесем кривую на график с исходными данными.
T = (0 : 0.1 : 2.5)';
Y = [ones(size(T)) T T.^2]*a;
plot(T,Y,'-',t,y,'o'); grid on
Очевидно, полиномиальная аппроксимация оказалась не столь удачной. Здесь можно или по-высить порядок аппроксимирующего полинома, или попытаться найти какую-либо другую функциональную зависимость для получения лучшей подгонки.
Линейно-параметрическая регрессия Данная терминология не совсем соответствует принятой в русско-язычных изданиях.
Вместо полиномиальной функции, можно было-бы попробовать так называемую линейно-параметрическую функцию. В данном случае, рассмотрим экспоненциальную функцию
y = a0 + a1?-t + a2t?-t
Здесь также, неизвестные коэффициенты a0 , a1 и a2 могут быть найдены методом наимень-ших квадратов. Составим и решим систему совместных уравнений, сформировав регресси-онную матрицу X, и применив для определения коэффициентов оператор \ :
X = [ones(size(t)) exp(- t) t.*exp(- t)];
a = X\y
a =
1.3974
- 0.8988
0.4097
Значит, наша модель данных имеет вид
y = 1.3974 - 0.8988?-t + 0.4097t?-t
Оценим теперь, как и раньше, значения модели на равноотстоящих точках (с шагом 0.1) и на-несем эту кривую на график с исходными данными.
Как видно из данного графика, подгонка здесь намного лучше чем в случае полиномиальной функции второго порядка.
Множественная регрессия
Рассмотренные выше методы аппроксимации данных можно распространить и на случай бо-лее чем одной независимой переменной, за счет перехода к расширенной форме записи. До-пустим, мы измерили величину y для некоторых значений двух параметров x1 и x2 и полу-чили следующие результаты
x1 = [0.2 0.5 0.6 0.8 1.0 1.1]' ;
x2 = [0.1 0.3 0.4 0.9 1.1 1.4]' ;
y = [0.17 0.26 0.28 0.23 0.27 0.24]' ;
Множественную модель данных будем искать в виде
y = a0 + a1x1 + a2x2
Методы множественной регрессии решают задачу определения неизвестных коэффициентов a0 , a1 и a2 путем минимизации среднеквадратической ошибки приближения. Составим сов-местную систему уравнений, сформировав матрицу регрессии X и решив уравнения отно-сительно неизвестных коэффициентов, применяя оператор \ .
X = [ones(size(x1)) x1 x2];
a = X\y
a =
0.1018
0.4844
-0.2847
Следовательно, модель дающая минимальную среднеквадратическую ошибку аппроксима-ции имеет вид
y = 0.1018 + 0.4844x1 - 0.2847x2
Для проверки точности подгонки найдем максимальное значение абсолютного значения от-клонений экспериментальных и расчетных данных.
Y = X*a;
MaxErr = max(abs(Y - y))
MaxErr =
0.0038
Эта ошибка дает основание утверждать, что наша модель достаточно адекватно отражает ре-зультаты наблюдений.
Графический интерфейс подгонки кривых
MATLAB дает возможность осуществлять аппроксимацию данных наблюдений при помощи специального графического Интерфейса Подгонки Кривых (ИПК) (в английском оригинале - Basic Fitting interface). Используя данный интерфейс, вы можете легко и быстро решить множество задач подгонки кривых, получая при этом самую разнообразную информацию о результатах вашей подгонки. ИПК предоставляет следующие возможности:
· Аппроксимирует данные используя сплайновый интерполянт, эрмитовый интерпо-лянт, или же полиномиальный интерполянт до 10 порядка включительно.
· Осуществляет множество графических построений для заданных наборов данных.
· Строит графики невязок (ошибок подгонки).
· Анализирует численные результаты подгонки.
· Осуществляет интерполяцию или экстраполяцию данных подгонки.
· Аннотирует графики численными результатами подгонки и нормами ошибок аппроксимации.
· Запоминает результаты подгонки и вычислений в рабочет пространстве MATLAB-а.
Основываясь на ваших конкретных задачах и приложениях, вы можете использовать ИПК, возможности, предоставляемыми командным окном, или же комбинировать эти две возмож-ности. Отметим, что ИПК предназначен только для работы с одномерными и двумерными данными.
Рассмотрение основных свойств ИПК
Общий вид ИПК показан ниже.
Для его вызова в подобном виде, нужно выполнить следующие три шага:
1. Построить какой либо график данных.
2. Выбрать опцию Basic Fitting из меню Tools вашего графического окна.
3. Нажать дважды на кнопку More в нижней части ИПК. В результате откроется окно c тремя панелями (см. рисунок), а сама надпись заменится на Less.
Рассмотрим основные опции ИПК.
Select data (Выбор данных) - В данном окне расположен список всех переменных, построен-ных на активном графике, с которым связан ИПК (на графике может быть построено неско-лько кривых). Используйте данный список для выбора требуемого (текущего) набора дан-ных. Под текущим подразумевается тот набор данных, для которого вы хотите осуществить подгонку. За один раз вы можете осуществлять действия только с одним набором данных. С другой стороны, вы можете произвести различные подгонки для текущего набора данных за счет изменения названия этих данных. С этой целью можно воспользоваться так называемым Редактором Графиков (Plot Editor), который будет рассмотрен в дальнейшем.
Center and scale X data (Центрирование и масштабирование данных X) - Если данная опция выбрана, то данные центрируются (нуль переносится в среднее значение данных) и масшта-бируются к единичному стандартному отклонению (делятся на исходное стандартное откло-нение). Это может потребоваться для повышения точности последующих математических вычислений. Если подгонка приводит к результатам, которые могут быть неточными, соот-ветствующее предупреждение выводится на экран.
Plot fits (Подгонка кривых) - Эта панель позволяет визуально просмотреть результаты одной или более подгонок текущего набора данных.
· Check to display fits on figure (Отметьте методы для вывода на график) - Выберите методы подгонок, которые вы хотели бы использовать и вывести на график. Здесь имеются две основные возможности - выбор интерполянтов и выбор полиномов. Сплайновый интерполянт использует для аппроксимации сплайны, тогда как эрми-товый интерполянт использует специальную функцию pchip (Piecewise Cubic Hermite Interpolating Polynomial - Кусочно-кубический Эрмитовый Интерполяционный Поли-ном). Полиномиальная подгонка использует функцию polyfit. Вы можете одновре-менно выбрать любые методы подгонки для аппроксимации ваших данных. Если ваш набор данных содержит N точек, вам следует использовать для аппроксимации поли-номы с не более чем N коэффициентами. В противном случае, ИПК автоматически приравнивает избыточное число коэффициентов нулю, что приводит к недоопреде-ленности системы. Укажем, что при этом на дисплей выдается соответствующее сооб-щение.
· Show equations (Показать уравнения) - При выборе данной опции, уравнение подгон-ки выводится на ваш график.
· Significant digits (Значащие разряды) - Выберите число значащих разрядов для выво-да на дисплей.
· Plot residuals (Построить графики разностей (невязок)) - При выборе данной опции, на график выводятся разности подгонок. Под разностью подгонки понимается раз-ность между исходными данными и результатами подгонки для каждого значения ар-гумента исходных данных. Вы можете построить графики невязок как столбчатую ди-аграмму (bar plot), как график рассеяния (scatter plot), или же как линейный график. Построения можно осуществлять как в том же графическом окне, так и в отдельном. При использовании подграфиков (subplots) для построения графиков многомерных данных, графики разностей могут быть построены только в отдельном графическом окне.
· Show norm of residuals (Показать норму разностей) - При выборе опции, на график выводятся также значения норм разностей. Норма разности является мерой качества подгонки, где меньшее значение нормы соответствует лучшему качеству. Норма рас-считывается при помощи функции norm(V,2), где V есть вектор невязок.
Numerical results (Численные результаты) - Данная панель позволяет изучать численные характеристики каждой отдельной подгонки для текущего набора данных, без построения графиков.
· Fit (Метод подгонки) - Выберите метод подгонки. Соответствующие результаты бу-дут представлены в окне под меню выбора метода. Заметим, что выбор метода в дан-ной панели не оказывает воздействия на панель Plot fits. Поэтому, если вы хотите по-лучить графическое представление, следует выбрать соответствующую опцию в пане-ли Plot fits.
· Coefficients and norm of residuals (Коэффициенты и норма невязок) - В данном окне выводятся численные выражения для уравнения подгонки, выбранного в Fit. Отме-тим, что при первом открытии панели Numerical Results , в рассматриваемом окне выдаются результаты последней подгонки, выбранной вами в панели Plot fits.
· Save to workspace (Запомнить в рабочем пространстве) - Вызывает диалоговое окно, которое позволяет запомнить в рабочем пространстве результаты вашей подгонки.
Find Y = f(X) - Данная панель дает возможность произвести интерполяцию или экстраполя-цию текущей подгонки.
· Enter value(s) (Введите данные) - Введите любое выражение, совместимое с систе-мой MATLAB для оценки вашей текущей подгонки в промежуточных или выходя-щих за пределы заданных аргументов точек. Выражение будет вычислено после на-жатия кнопки Evaluate (Вычислить), а результаты в табличной форме будут выве-дены в соответствующее окно ниже. Метод текущей подгонки при этом указан в ме-ню Fit.
· Save to workspace (Запомнить в рабочем пространстве) - Вызывает диалоговое окно, которое позволяет запомнить в рабочем пространстве результаты вашей интерполя-ции.
· Plot results (Построить графики) - При выборе данной опции, результаты интерполя-выводятся в графической форме на график данных.
Уравнения в конечных разностях и фильтрация
MATLAB имеет спциальные функции для работы с уравнениями в конечных разностях и фи-льтрами. Эти функции работают главным образом с векторами. Векторы используются для хранения дискретных сигналов или последовательностей, а также для обработки сигналов и анализа данных. Для систем со многими входами, каждая строка матрицы соответствует од-ной временной точки выборки сигналов, где каждый вход описывается как один вектор-стол-бец.
Функция
y = filter(b, a, x)
обрабатывает данные в векторе x посредством фильтра, описываемого векторами a и b, вы-давая фильтрованные данные y. Функция filter может рассматриваться как эффективная реа-лизация уравнения в конечных разностях. Структура функции filter является обобщенной структурой фильтра, образованного при помощи линий задержки, который описывается приведенными ниже уравнениями в конечных разностях, где n есть индекс (номер) текущей выборки, na есть порядок полинома, описываемого вектором a , а nb есть порядок полино-ма,описываемого вектором b. Выход y(n) является линейной комбинацией текущего и пре-дыдущих входов, то есть x(n) x(n-1) ..., и предыдущих выходов y(n-1) y(n-2) ...
a(1) y(n) = b(1) x(n) + b(2) x(n-1) + … + b(nb) x(n-nb+1) -
- a(2) y(n-1) - … - a(na) y(n-na+1)
Допустим, например, что мы хотим сгладить данные нашей задачи по движению автомоби-лей при помощи усредняющего фильтра, который выдает среднее количество машин за каж-дые 4 часа. Данный процесс можно выразить при помощи следующего уравнения в конеч-ных разностях:
y(n) = (1/4) x(n) + (1/4) x(n-1) + (1/4) x(n-2) + (1/4) x(n-3)
Соответствующие векторы равны:
a = 1; b = [1/4 1/4 1/4 1/4];
Воспользуемся данными матрицы count из раздела Анализ данных и статистика. Для на-шего примера, обозначим первый столбец матрицы count через вектор x :
x = count(:, 1);
Усредненные за 4 часа данные могут быть легко вычислены при помощи приведенной выше функции y = filter(b, a, x). Сравним исходные и сглаженные данные, построив их на одном графике.
t = 1:length(x) ;
plot(t, x, '-.', t, y, '-'); grid on
legend('Original Data','Smoothed Data',2)
Исходные данные наблюдения представлены здесь штрих-пунктирной линией, а сглаженные за 4 часа данные - сплошной линией.
Для различных практических приложений, в специальном пакете Signal Processing Toolbox предусмотрены многочисленные функции для анализа сигналов и проектирования дискрет-ных фильтров.
Многомерные Массивы
Многомерные массивы в системе MATLAB являются распространением обычных двумерных матриц. Как известно, матрицы имеют две размерности - строки (row) и столбцы (column).
Вы можете выделить любой элемент двумерной матрицы при помощи двух индексов, где первый является индексом (номером) строки, а второй - индексом столбца. Многомерные массивы имеют дополнительную индексацию. Например, трехмерные массивы имеют три индекса:
· Первый индекс указывает размерность 1 , то есть строки.
· Второй индекс указывает размерность 2. то есть столбцы.
· Третий индекс указывает на размерность 3. В данном пособии используется концепция страницы (page) для представления размерности 3 и выше.
Для обращения, например, к элементу второй строки и третьего столбца на странице 2 нужно воспользоваться индексацией (2,3,2) (см. рисунок ниже).
Если вы добавляете размерности к массиву, вы также добавляете индексы. Четырехмерный массив, например, имеет 4 индекса. Первые два из них указывают на пару строка-столбец, а следующие два характеризуют третью и четвертую размерности.
Отметиим, что общие функции обращения с многомерными массивами находятся в директории datatypes.
Создание Многомерных Массивов
При создании многомерных массивов можно воспользоваться теми же приемами, которые используются для двумерных матриц.
Создание массивов с использованием индексации
Один из способов формирования многомерного массива состоит в создании двумерного массива и соответствующего его расширения. Например, начнем с простого двумерного массива А.
A = [5 7 8; 0 1 9; 4 3 6];
А является массивом 3х3, то есть его размерности строк и столбцов равны трем. Для добавления третьей размерности к А запишем
A(:,:,2) = [1 0 4; 3 5 6; 9 8 7].
MATLAB выдаст
A(:, : ,1) =
5 7 8
0 1 9
4 3 6
A(:, :, 2) =
1 0 4
3 5 6
9 8 7
Вы можете продолжить добавление строк, столбцов или страниц аналогичным образом.
Расширение Многомерных Массивов. Для расширения любой размерности массива А нужно:
· Увеличить или добавить соответствующий индекс и задать требуемые значения.
· Добавить такое же количество элементов к соответствующим размерностям массива. Так, для числовых массивов все строки должны иметь одинаковое число элементов, все страницы должны иметь одинаковое число строк и столбцов и т.д.
Вы можете воспользоваться свойством скалярного распространения системы MATLAB, совместно с оператором двоеточия, для заполнения всей размерности единственным числом:
A(:, :, 3) = 5;
A(:, :, 3)
ans =
5 5 5
5 5 5
5 5 5
Для превращения А в четырехмерный массив размерности 3х3х3х2 введите
A(:, :, 1, 2) = [1 2 3; 4 5 6; 7 8 9];
A(:, :, 2, 2) = [9 8 7; 6 5 4; 3 2 1];
A(:, :, 3, 2) = [1 0 1; 1 1 0; 0 1 1];
Отметим, что после первых двух вводов MATLAB добавляет в A требуемое количество нулей, чтобы поддержать соответствующие размеры размерностей (речь идет о первом элементе по четвертой размерности, то есть при четвертом индексе равном единице, массив А будет содержать три нулевые матрицы размера 3х3).
Создание масивом с применением функций MATLAB-а.
Вы можете использовать для создания многомерных массивов такие функции MATLAB-а как randn, ones, и zeros, совершенно аналогично способу используемому для двумерных матриц. Каждый вводимый аргумент представляет размер соответствующей размерности в результирующем массиве. Например, для создания массива нормально распределенных случайных чисел размера 4х3х2 следует записать:
B = randn(4,3,2).
Для создания массива, заполненного единственным постоянным значением можно восполь-зоваться функцией repmat. Эта функция копирует массив (в нашем случае массив размера 1х1) вдоль вектора размерностей массива.
B = repmat(5,[3 4 2])
B(:, :, 1) =
5 5 5 5
5 5 5 5
5 5 5 5
B(:, :, 2) =
5 5 5 5
5 5 5 5
5 5 5 5
Внимание! Любая размерность массива может иметь размер 0, что просто дает пустой массив (empty array) . Так, размер 10х0х20 является допустимым размером многомерного массива.
Создание многомерного массива при помощи функции cat.
Функция cat дает простой путь построения многомерных массивов; она объединяет набор массивов вдоль заданной размерности.
B = cat (dim,A1,A2...)
где А1, А2 и т.д. являются объединяемыми массивами. а dim есть размерность, вдоль которой они объединяются. Например, для создания нового массива из двух двумерных матриц при помощи функции cat запишем
B = cat (3, [2 8; 0 5], [1 3; 7 9])
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9
|