Автоматизированный электропривод многоканатной подъемной установки
где Ud ном - номинальное выпрямленное напряжение, В;
Uвх тп=8 В - входное напряжение управления.
2.3. Выбор силового трансформатора
2.3.1. Полную мощность силового трансформатора Sт определим по формуле:
(2.7)
где км ср вз=0,575 - средневзвешенный коэффициент
мощности[2].
Рном - номинальная мощность двигателя, кВт.
2.3.2. Линейное напряжение вторичной обмотки, необходимое для выбора трансформатора, определим по формуле:
U2=(кз/ксх)(Vmaxкv+Uкср+IэфRяц)=
=(1,1/1,35)(1655+26,4+49060,00881)=773 В, (2.8)
где кз=1,1 - коэффициент запаса 2;
ксх=1,35 - коэффициент схемы выпрямления 2;
кu - коэффициент пропорциональности, В/(м/с);
Uк ср - коммутационное снижение напряжения, В;
Iэф - эффективный ток, А;
Rяц - сопротивление якорной цепи, Ом;
Vmax - максимальная скорость, м/с.
Выбор трансформатора производится по двум параметрам - полной мощности Sт ном и напряжению на вторичной обмотке U2ном при соблюдении условий:
Sт нои Sт и U2ном U2. (2.9)
Для комплектной поставки в составе преобразовательного агрегата типа ТП3-6300/1050-10/ОУ4 применим масляный двухобмоточный с двумя активными частями в одном баке трансформатор типа
ТДНПД-12000/10У2 2.
2.4. Расчет сглаживающего реактора
Сглаживающую индуктивность определяем из условия непрерывности выпрямленного тока. При этом принимается, что при угле отпирания тиристоров =80 и токе нагрузки 10% от номинального (0,1Id ном) режим прерывистого тока должен быть исключен.
2.4.1. Суммарное сопротивление цепи выпрямленного тока Rs рассчитываем по формуле:
(2.10)
2.4.2. Базовый ток определим по формуле:
(2.11)
где U2 - максимальное значение напряжения на вентильной обмотке силового трансформатора.
2.4.3. Номинальный ток в относительных единицах:
; (2.12)
Базовый параметр нагрузки определяется по графику рис.2.1.[2] для значений 150, mб=6 и iдв=0,076 и составляет tgQб=7.
2.4.4. Требуемый параметр нагрузки, обеспечивающий допустимый коэффициент пульсации тока в выпрямленной цепи:
(2.13)
2.4.5. Суммарная индуктивность цепи выпрямленного тока.
(2.14)
где 2f - угловая частота питающей сети;
2.4.6. Индуктивность активной части трансформатора.
(2.15)
где ек - напряжение короткого замыкания, отн.ед.;
U2 ном - фазное напряжение вентильной обмотки, В;
I2 ном - ток вентильной обмотки, А;
f - частота питающей сети,Гц.
2.4.7. Индуктивность якоря двигателя Lд определяем по формуле Лиумвиля-Уманского:
(2.16)
где с1=0,1 - коэффициент для компенсированных электродвигателей;
2р=16 - число пар полюсов;
nном - номинальная частота вращения двигателя, об/мин;
Uном - номинальное напряжение двигателя, В;
Iном - номинальный ток двигателя, А.
2.4.8. Индуктивность сглаживающего реактора определяем по формуле [4]:
(2.17)
где Uном - номинальное напряжение двигателя, В;
Iном - номинальный ток двигателя, А.
Применим реактор типа СРОС3-3200МУХЛ4 на номинальный ток
3200А и с индуктивностью 0,5 мГн 2.
2.5. Расчет автоматического выключателя в якорной цепи
2.5.1. Коэффициент пропорциональности между движущим усилием и током якоря двигателя кf определим по формуле:
(2.18)
где Мном - номинальный момент двигателя, Нм;
Rшт - радиус шкива трения, м;
Iном - номинальный ток двигателя, А.
2.5.2. Максимальный ток двигателя Imax рассчитаем по формуле:
(2.19)
2.5.3. Ток уставки Iуст срабатывания реле максимальной защиты определим по формуле:
Iуст=кнImax=1,17329=8062 А, (2.20)
где кн=1,1 - коэффициент надежности 2.
Применим автоматический выключатель ВАТ-42-1000/10-Л-У4 с реле защиты РДШ-6000 и диапазоном тока уставки
600012000 А 1.
2.6.Выбор тиристорного возбудителя
2.6.1. Индуктивность обмотки возбуждения двигателя определим по формуле:
(2.21)
где L - индуктивность, обусловленная полезным потоком, Гн;
Lр - индуктивность от полей рассеивания, Гн;
2р - число пар полюсов;
Wв=84 - число витков на полюс;
ном=1,1 - коэффициент рассеивания при номинальном потоке [2];
Ф - изменение потока, вызванное соответствующим изменением ампер-витков (IвWв), Вб (рис.2.2.).
2.6.2. Постоянную времени цепи возбуждения Тв определим по формуле:
(2.22)
где Lов - индуктивность обмотки возбуждения, Гн;
Rов - сопротивление обмотки возбуждения, Ом.
2.6.3. Время рывка tр при высоте подъема Н=1079 м согласно графику 2:
tр=2с. (2.23)
2.6.4. Требуемое значение коэффициента форсировки кф определим по формуле:
(2.24)
(2.25)
где Тв - постоянная времени возбуждения, с.
2.6.5. Максимальное значение выпрямленного напряжения Umax определим по формуле:
Ud max=КфUв ном=3,06145=443,7 В, (2.26)
где Uв ном - номинальное напряжение возбуждения при параллельном соединении полуобмоток возбуждения, В.
Применим тиристорный возбудитель ТПР9-320/460Р-31У4 с номинальным током 320 А и номинальным напряжением 460 В 2.
2.6.6. Передаточный коэффициент ктв тиристорного возбудителя определим по формуле:
Ктв=Ud ном/Uвх тв=460/8=57,5, (2.27)
где Ud ном - номинальное выпрямленное напряжение, В;
Uвх тв=8 В - выходное напряжение управления.
2.7. Выбор тахогенератора в цепи ОС по скорости
Применяем тахогенератор типа ПТ-42 с номинальной частотой вращения nтг ном=100 об/мин и номинальным напряжением Uтг ном=230В 2.
2.7.1. Максимальное напряжение на выходе тахогенератора Uтг max определим по формуле:
Uтг=Uтг ном(nдв ном/nтг ном)=230(63/100)=145, (2.28)
где Uтг ном - номинальное напряжение тахогенератора, В;
nдв ном - номинальная частота вращения двигателя, об/мин;
nтг ном - номинальная частота вращения тахогенератора, об/мин.
2.7.2. Передаточный коэффициент ктг рассчитаем по формуле:
ктг=Uтг max/nдв ном=145/63=2,3 В/(об/мин). (2.29)
3. АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ ЭЛЕКТРОПРИВОДОМ
На основе технических решений принятых на первом [1] и втором [2] этапах проектирования, выбирают регуляторы тока, скорости и другие технические средства, составляющие систему автоматического управления электроприводом.
Таблица 3.1.
Наименование величин.
|
Обозначение.
|
|
Подъёмная машина
|
|
|
Суммарный маховый момент
|
GD2=9150 кгм2
|
|
Нормальное ускорение и замедление
|
а 1 = а 3 =0,6 м/с2
|
|
Максимальная скорость
|
v max=16 м/с
|
|
Диаметр шкива трения
|
D шт =5 м
|
|
Двигатель
|
|
|
Номинальный момент
|
М ном = 774 кНм
|
|
Номинальная частота вращения
|
n ном = 63 об/мин
|
|
Суммарное сопротивление якорной цепи
|
R я = 0,00348 Ом
|
|
Суммарная индуктивность якорной цепи
|
L я = 0,08 мГн
|
|
Индуктивность сглаживающего дросселя
|
L р = 0,5 мГн
|
|
Номинальный ток
|
I я ном = 5740 А
|
|
Эффективный ток
|
I эф = 4906 А
|
|
Максимальный ток
|
I я max = 7610 А
|
|
Номинальное напряжение
|
U ном = 930 В
|
|
Номинальная мощность
|
P ном = 5000 кВт
|
|
Число полюсов обмотки якоря
|
2р = 16
|
|
Число параллельных ветвей обмотки якоря
|
2а = 16
|
|
Число активных проводников обмотки якоря
|
N =
|
|
Номинальный магнитный поток
|
Ф ном = 37,5 Вб
|
|
Номинальное напряжение возбуждения
|
U в.ном = 200 В
|
|
Номинальный ток возбуждения
|
I в.ном = 145 А
|
|
Сопротивление обмотки возбуждения
|
r в = 0,87 Ом
|
|
Индуктивность обмотки возбуждения
|
L в = 3,1 Гн
|
|
Передаточный коэффициент тахогенератора
|
К тг = 2,3 В/об/мин
|
|
Постоянная времени обмотки возбуждения
|
Т в = 3,06 с
|
|
Номинальный ток шунта
|
I ш = 200 А
|
|
Тиристорный преобразователь
|
|
|
Постоянная времени
|
Т м = 0,02 с
|
|
Максимальное выпрямленное напряжение
|
U d max = 660 В
|
|
Коэффициент передачи
|
К тп = 82,5
|
|
Тиристорный возбудитель
|
|
|
Постоянная времени
|
Т вм = 0,02 с
|
|
Максимальное выпрямленное напряжение
|
U d max = 1050 В
|
|
Коэффициент передачи
|
К тв = 131,25
|
|
Коэффициент форсировки
|
К ф = 3,06
|
|
Система электропривода
|
|
|
Коэффициент пропорциональности между эдс и скоростью
|
К v = 55 В/(м/с)
|
|
Коэффициент пропорциональности между усилием и током якоря
|
К F = 52 Н/А
|
|
Суммарная приведенная масса
|
m п = 188103 кг
|
|
|
3.1. Расчет системы подчиненного регулирования координат
электропривода
Рассчитаем параметры САУ на основе элементов УБСР-АИ, входящих в состав комплектного электропривода КТЭУ.
Система построена по принципу подчиненного регулирования с зависимым регулированием тока возбуждения от тока якорной цепи при значениях тока якорной цепи менее 0,5Iдв ном .
Расчет конкретных параметров САУ произведем, используя структурную схему, построенную по математическому описанию электромеханических процессов в абсолютных единицах.[3]
При расчете принимаем следующие допущения:
- механическая система представляется в виде одномассовой системы;
- демпфирующее действие вихревых токов в шихтованной станине электродвигателя не учитывается.
3.2.Расчет контура регулирования тока возбуждения
Структурная и функциональная схемы контура регулирования тока возбуждения представлены на рис.3.1.
3.2.l. Постоянная времени фильтра Тфв рассчитывается по формуле:
(3.1)
где к=56 - коэффициент, учитывающий уменьшение уровня пульсаций [3];
m=6 - пульсация сигнала за период для мостовой схемы;
f=50 Гц - частота питающей сети.
3.2.2. Постоянная времени контура тока возбуждения Т в:
Тв=Тв+Тфв=0,02+0,0025=0,0225 с, (3.2)
где Т в - постоянная времени тиристорного возбудителя, с;
Тфв - постоянная времени фильтра, с.
3.2.3. Параметры фильтра (Rф ,Сф ):
Сф=Тфв/Rф=0,0025/100=2510-6 Ф, (3.3)
где Rф=10100 Ом - сопротивление фильтра;
Сф - емкость фильтра.
3.2.4. Передаточный коэффициент цепи обратной связи Кв:
(3.4)
где Rзтв и Rтв - входные сопротивления регулятора (Rзтв=Rтв);
Uдтв=10В - напряжение выхода датчика тока при номинальном токе Iв ном .
3.2.5. Статическую ошибку Iв для пропорционального регулятора определим по формуле:
(3.5)
где Iв ном - номинальный ток возбуждения, А;
Тв - постоянная времени обмотки возбуждения, с;
атв=2 - коэффициент настройки контура, принимаемый по условию модульного оптимума [3];
Тв - постоянная времени контура тока возбуждения, с.
Решение: Реализовать условие Uдв=Uдтв и выбрать значение входных сопротивление регулятора тока возбуждения:
Rзтв=Rтв=10 кОм
3.2.6. Требуемый коэффициент датчика тока Кдтв определим по формуле:
(3.6)
где Iш ном - номинальный ток шунта, А;
Iв ном - номинальный ток возбуждения, А;
Кв - передаточный коэффициент цепи обратной связи;
Кшв=Uш ном /Iш ном - коэффициент шунта.
Предварительно применим ячейку датчика тока типа ДТ-3АИ(УБСР-АИ), коэффициент передачи которого регулируется в пределах 53,3133,3. Для уменьшения требуемого коэффициента датчика тока применить два шунта типа 75ШСМ 200А, соединенных параллельно друг другу 3.
3.2.7. Сопротивление обратной связи регулятора тока возбуждения Rотв вычислим по формуле:
(3.7)
где Rзтв - входное сопротивление регулятора тока возбуждения, Ом;
Тв - постоянная времени обмотки возбуждения, с;
rв - сопротивление обмотки возбуждения, Ом;
атв - коэффициент настройки контура на модульный оптимум;
Тв - постоянная времени контура тока возбуждения, с;
Ктв - передаточный коэффициент тиристорного возбудителя;
Кв - передаточный коэффициент обратной связи.
3.2.8. Установившиеся уровни выходного напряжения регулятора тока возбуждения для номинального и форсированного режимов Uртв ном Uртв ф рассчитаем по формулам:
(3.8)
где Uв ном - номинальное напряжение обмотки возбуждения, В;
Ктв - передаточный коэффициент обмотки возбуждения;
Кф - коэффициент форсировки.
Окончательно выберем ячейку датчика тока ДТ-3АИ (УБСР-АИ).
3.3. Расчет контура регулирования тока якорной цепи
Структурная и функциональная схемы контура регулирования тока якорной цепи представлена на рис.3.2.
3.3.1. Постоянную времени фильтра Тфт на входе датчика тока рассчитываем по формуле:
(3.9)
где к=56 - коэффициент, учитывающий уменьшение уровня пульсаций [3]
m=12 - пульсация сигнала за период для двойной трехфазной мостовой схемы;
f=50Гц - частота питающей сети.
3.3.2. Емкость Т-образного фильтра рассчитаем по формуле:
Сф=Тфт/Rф=0,00125/100=12,5 мкФ, (3.10)
где Rф - сопротивление, принимаемое в пределах 10100 Ом.
3.3.3. Эквивалентную не компенсируемую постоянную времени контура тока вычислим по формуле:
Тт=Тт+Тфт=0,02+0,00125=0,02125 с, (3.11)
где Тт=0,02с - постоянная времени тиристорного преобразователя.
Решение: примем согласованное управление током якоря Iя и током возбуждения Iв в функции напряжения на выходе регулятора скорости Uрс.
Применим условие начала реверсирования Iв/Iя=0,5I, т.е. уровень тока якоря, с которого начинается изменение тока возбуждения, составляет
iя рев=0,5.
3.3.4. Допустимое значение скорости изменения тока якоря рассчитывается по формуле:
(3.12)
где Кп=2 - коэффициент, учитывающий перегрузку по току якоря [3];
Тв - постоянная времени обмотки возбуждения двигателя, с;
Кф - коэффициент форсировки;
iя рев - относительное значение тока якоря, при котором начинается изменение тока возбуждения (реверс).
3.3.5. Максимальное значение параметра настройки регулятора тока ат определяется из условия:
(3.13)
Решение: Параметр настройки регулятора тока принять по условию модульного оптимума, т.е. ат=2.
3.3.6. Передаточный коэффициент обратной связи контура тока определяются по формуле:
(3.14)
где Rзт и Rт - входные сопротивления регулятора тока, отношение которых принимается равным единице;
Uдт max - не должно превышать 15 В (напряжение питания УБСР-АИ)
3.3.7. Коэффициент шунта определяется по паспортным данным:
Кш=Uш ном /Iш ном=0,075/10000=7510-6 В/А, (3.15)
где Uш ном=75 мВ для шунта 75 ШСМ 3;
Iш ном - номинальный ток шунта.
3.3.8. Коэффициент датчика тока определяется по формуле:
(3.16)
3.3.9. Параметры регулятора тока вычисляем по формуле:
(3.17)
Rот=Тя/Сот=0,0810-3/(210-60,01438)=2,78 кОм,
где Тит - постоянная времени интегральной части ПИ-регулятора, с;
Сот=23мкФ - емкость обратной связи регулятора токам [3];
Тя=Lя/Rя - постоянная времени якорной цепи, с;
Ктп, Rя, Lz - заданные величины.
3.3.10. Постоянная времени интегратора:
(3.18)
где iя max=Iя max /Iя ном=7610/5740=1,33.
3.3.11. Коэффициент усиления нелинейного элемента в линейной зоне:
(3.19)
3.3.12. Сопротивление обратной связи R3 при R1=10 кОм:
R3=R1Кнэ=10Кнэ=1035,3=353 Ом. (3.20)
3.3.13. Входное сопротивление R4 для усилителя У2 при С1=3 мкФ:
R4=Тип/С1=3/(310-6)=100 кОм. (3.21)
3.3.14. Напряжение ограничения усилителя У1:
(3.22)
3.3.15. Входное сопротивление R2 для усилителя У1:
R2=R1=10 кОм. (3.23)
3.4. Расчет контура регулирования скорости
3.4.1. Максимальное значение приращения движущего усилия Fст max определяют из условия:
Fст max 0,1F1=0,1339400=33,94 кН, (3.24)
где F1 - движущее усилие, равное статическому в начальный момент времени, Н.
Решение: Примем максимальное значение движущего усилия, при котором в замкнутой системе регулирования скорость не должна изменится более, чем на 1%:
Vmax=0,0116=0,16 м/с. (3.25)
3.4.2. Абсолютное значение статической ошибки в замкнутой системе управления Vа определим по формуле:
(3.26)
где ас=2 - параметр настройки регулятора скорости [3];
Тс=а2т(Т+Тфт)+Тфс=4(0,02+0,0125)+0,02=0,15 с - эквивалентная не компенсируемая постоянная времени контура скорости, с;
ат=2 - параметр настройки регулятора тока [3];
Т=0,02с - постоянная времени тиристорного преобразователя [3];
Тфт - постоянная времени фильтра на входе датчика тока, с;
- постоянная времени фильтра на входе датчика скорости, с;
К=3 - кратность уменьшения пульсации напряжения тахогенератора [3];
- частота полюсных пульсаций тахогенератора, Гц;
КК, КV - заданные величины;
Тм - электромеханическая постоянная времени электропривода, с; m, R - ранее рассчитанные величины.
3.4.3. Относительное значение статической ошибки при установившемся режиме в замкнутой системе определим по формуле:
V%=(Va/Vmax)100%=(0,054/16)100=0,34 1%. (3.27)
3.4.4. Время регулирования определили по формуле:
(3.28)
где =0,03 - допустимая динамическая ошибка по скорости 3;
Vmax - максимальная скорость движения подъемных сосудов, м/с;
аmax - максимальное ускорение в период разгона и замедления, м/с2.
3.4.4. Масштаб времени Z определили по формуле:
Z=tрег/tнор=3/6=0,5 с, (3.29)
где tнор=6 с - нормированное время переходного процесса [3].
Принимаем график переходного процесса для параметров Z=0,5, т=0,15 5.
3.4.5. Параметры настройки двухкратноинтегрирующего контура скорости определяем из условия равенства выражений:
всас2ат22=2,5Z2; всасат=2,5Z. (3.30)
Отсюда вс=2,5; ас=Z/(ат)=0,5/(20,15)=1,7. (3.31)
Решение: Приняли структурную и функциональную схемы контура регулирования скорости (рис.3.3)
3.4.6. Коэффициент обратной связи по скорости рассчитали по формуле:
(3.32)
где Rзс=Rс;
Uдс - напряжение, В, снимаемое с датчика скорости при скорости подъема Vmax , м/с.
Используем ячейку датчика напряжения ДН-2АИ (УБСР-АИ), и присоединим его вход к выходу тахогенератора с помощью делителя напряжения Rд и Rд. Принять Uдс=Vmax 3.
3.4.7. Напряжение, снимаемое с тахогенератора, определили по формуле:
(3.33)
где Uтг ном - номинальное напряжение тахогенератора, В;
nтг ном - номинальная частота вращения тахогенератора, об/мин;
nдв ном - номинальная частота вращения двигателя, об/мин.
3.4.8. Полное сопротивление делителя напряжения определим по формуле:
Rд=Uтг/Iтг ном=149,5/0,1=1,5 кОм, (3.34)
где Iтг ном - номинальный ток тахогенератора, А.
3.4.9. Мощность резисторов:
Pд=UтгIтг ном=149,50,1=14,95 Вт. (3.35)
(3.36)
Условие согласования: Rд=2400/10=240 Ом, (3.37)
где Rвх д=2,4кОм - входное сопротивление датчика ДН-2АИ(УБСР-АИ)
Передаточная функция ПИ-регулятора скорости имеет вид:
(3.38)
3.4.10. Параметры ПИ-регулятора скорости:
(3.39)
Условие жесткости подъемных канатов:
так как Кпс10 необходимо принять демпфирующий коэффициент
(3.40)
где Кпс=10 [3].
3.4.11. Постоянная времени интегральной части ПИ-регулятора скорости:
(3.41)
Применим ячейку регулятора скорости РС-1АИ (УБСР-АИ).
3.4.12. Входные сопротивления регулятора скорости (Сос=2мкФ):
Rзс=Rс=Тис/Сос=0,03/(210-6)=15 кОм. (3.42)
3.4.13. Сопротивление обратной связи регулятора скорости:
Rос=RзсКпс=1500021,4=321 кОм. (3.43)
3.4.14. Параметры фильтра на входе регулятора скорости:
Тф=всасТс=2,51,70,15=0,64 с; (3.44)
Сфс=Тф/(0,5Rзс)=0,64/(0,515000)=0,85 мкФ. (3.45)
4. Список используемой литературы
1. Родченко А.Я., Евсеев Ю.В. Автоматизированный электропривод многоканатной подъемной установки. Ч.1. Механическая часть электропривода: Учеб.пособие /Норильский индустр. ин-т.- Норильск, 1996.-44с.
2. Писарев А.И., Родченко А.Я. Автоматизированный электропривод многоканатной подъемной установки. Ч.2. Система «управляемый выпрямитель - двигатель» с реверсом возбуждения двигателя. Силовые элементы электропривода: Учеб.пособие /Норильский индустр. ин-т.- Норильск, 1996.-48с.
3. Писарев А.И., Родченко А.Я. Автоматизированный электропривод многоканатной подъемной установки. Ч.3. Система «управляемый выпрямитель - двигатель» с реверсом возбуждения двигателя. Автоматическое управление электроприводом: Учеб.пособие /Норильский индустр. ин-т.- Норильск, 1996.-26с.
4. Комплектные тиристорные электроприводы:Справочник / И.Х.Евзеров, А.С.Горобец, Б.И.Мошкович и др.; Под ред. канд. техн.наук В.М.Перельмутера.- М.:Энергоатомиздат, 1988.-319с.:ил.
5. Католиков В.Е., Динкель А.Д., Седунин А.М. Тиристорный электропривод с реверсом возбуждения двигателя рудничного подъема.- М.:Недра, 1990.-382с.:ил.
6. Тиристорный электропривод рудничного подъема / А.Д.Динкель, В.Е.Католиков, В.И.Петренко, Л.М.Ковалев.-М.:Недра, 1977.-312с.:ил.
7. Александров К.К., Кузьмина Е.Г., Электротехнические чертежи и схемы.- М.:Энергоатомиздат, 1990.- 288с.:ил.
8. Католиков В.Е., Динкель А.Д., Седунин А.М. Автоматизированный электропривод подъемных установок глубоких шахт.- М.:Недра, 1983.-270с.:ил.
9. Малиновский А.К., Автоматизированный электропривод машин и установок шахт и рудников: Учебник для вузов.- М.:Недра,1987.- 277с.:ил.
10. Хаджиков Р.Н., Бутаков С.А., Горная механика:Учебник для техникумов.- 6-е изд., перераб. и доп.- М.:Недра, 1982.-407с.
Страницы: 1, 2
|