бесплатные рефераты

Автоматизированный электропривод многоканатной подъемной установки

где Ud ном - номинальное выпрямленное напряжение, В;

Uвх тп=8 В - входное напряжение управления.

2.3. Выбор силового трансформатора

2.3.1. Полную мощность силового трансформатора Sт определим по формуле:

(2.7)

где км ср вз=0,575 - средневзвешенный коэффициент

мощности[2].

Рном - номинальная мощность двигателя, кВт.

2.3.2. Линейное напряжение вторичной обмотки, необходимое для выбора трансформатора, определим по формуле:

U2=(кзсх)(Vmaxкv+Uкср+IэфRяц)=

=(1,1/1,35)(1655+26,4+49060,00881)=773 В, (2.8)

где кз=1,1 - коэффициент запаса 2;

ксх=1,35 - коэффициент схемы выпрямления 2;

кu - коэффициент пропорциональности, В/(м/с);

Uк ср - коммутационное снижение напряжения, В;

Iэф - эффективный ток, А;

Rяц - сопротивление якорной цепи, Ом;

Vmax - максимальная скорость, м/с.

Выбор трансформатора производится по двум параметрам - полной мощности Sт ном и напряжению на вторичной обмотке U2ном при соблюдении условий:

Sт нои Sт и U2ном U2. (2.9)

Для комплектной поставки в составе преобразовательного агрегата типа ТП3-6300/1050-10/ОУ4 применим масляный двухобмоточный с двумя активными частями в одном баке трансформатор типа

ТДНПД-12000/10У2 2.

2.4. Расчет сглаживающего реактора

Сглаживающую индуктивность определяем из условия непрерывности выпрямленного тока. При этом принимается, что при угле отпирания тиристоров =80 и токе нагрузки 10% от номинального (0,1Id ном) режим прерывистого тока должен быть исключен.

2.4.1. Суммарное сопротивление цепи выпрямленного тока Rs рассчитываем по формуле:

(2.10)

2.4.2. Базовый ток определим по формуле:

(2.11)

где U2 - максимальное значение напряжения на вентильной обмотке силового трансформатора.

2.4.3. Номинальный ток в относительных единицах:

; (2.12)

Базовый параметр нагрузки определяется по графику рис.2.1.[2] для значений 150, mб=6 и iдв=0,076 и составляет tgQб=7.

2.4.4. Требуемый параметр нагрузки, обеспечивающий допустимый коэффициент пульсации тока в выпрямленной цепи:

(2.13)

2.4.5. Суммарная индуктивность цепи выпрямленного тока.

(2.14)

где 2f - угловая частота питающей сети;

2.4.6. Индуктивность активной части трансформатора.

(2.15)

где ек - напряжение короткого замыкания, отн.ед.;

U2 ном - фазное напряжение вентильной обмотки, В;

I2 ном - ток вентильной обмотки, А;

f - частота питающей сети,Гц.

2.4.7. Индуктивность якоря двигателя Lд определяем по формуле Лиумвиля-Уманского:

(2.16)

где с1=0,1 - коэффициент для компенсированных электродвигателей;

2р=16 - число пар полюсов;

nном - номинальная частота вращения двигателя, об/мин;

Uном - номинальное напряжение двигателя, В;

Iном - номинальный ток двигателя, А.

2.4.8. Индуктивность сглаживающего реактора определяем по формуле [4]:

(2.17)

где Uном - номинальное напряжение двигателя, В;

Iном - номинальный ток двигателя, А.

Применим реактор типа СРОС3-3200МУХЛ4 на номинальный ток

3200А и с индуктивностью 0,5 мГн 2.

2.5. Расчет автоматического выключателя в якорной цепи

2.5.1. Коэффициент пропорциональности между движущим усилием и током якоря двигателя кf определим по формуле:

(2.18)

где Мном - номинальный момент двигателя, Нм;

Rшт - радиус шкива трения, м;

Iном - номинальный ток двигателя, А.

2.5.2. Максимальный ток двигателя Imax рассчитаем по формуле:

(2.19)

2.5.3. Ток уставки Iуст срабатывания реле максимальной защиты определим по формуле:

IустнImax=1,17329=8062 А, (2.20)

где кн=1,1 - коэффициент надежности 2.

Применим автоматический выключатель ВАТ-42-1000/10-Л-У4 с реле защиты РДШ-6000 и диапазоном тока уставки

600012000 А 1.

2.6.Выбор тиристорного возбудителя

2.6.1. Индуктивность обмотки возбуждения двигателя определим по формуле:

(2.21)

где L - индуктивность, обусловленная полезным потоком, Гн;

Lр - индуктивность от полей рассеивания, Гн;

2р - число пар полюсов;

Wв=84 - число витков на полюс;

ном=1,1 - коэффициент рассеивания при номинальном потоке [2];

Ф - изменение потока, вызванное соответствующим изменением ампер-витков (IвWв), Вб (рис.2.2.).

2.6.2. Постоянную времени цепи возбуждения Тв определим по формуле:

(2.22)

где Lов - индуктивность обмотки возбуждения, Гн;

Rов - сопротивление обмотки возбуждения, Ом.

2.6.3. Время рывка tр при высоте подъема Н=1079 м согласно графику 2:

tр=2с. (2.23)

2.6.4. Требуемое значение коэффициента форсировки кф определим по формуле:

(2.24)

(2.25)

где Тв - постоянная времени возбуждения, с.

2.6.5. Максимальное значение выпрямленного напряжения Umax определим по формуле:

Ud maxфUв ном=3,06145=443,7 В, (2.26)

где Uв ном - номинальное напряжение возбуждения при параллельном соединении полуобмоток возбуждения, В.

Применим тиристорный возбудитель ТПР9-320/460Р-31У4 с номинальным током 320 А и номинальным напряжением 460 В 2.

2.6.6. Передаточный коэффициент ктв тиристорного возбудителя определим по формуле:

Ктв=Ud ном/Uвх тв=460/8=57,5, (2.27)

где Ud ном - номинальное выпрямленное напряжение, В;

Uвх тв=8 В - выходное напряжение управления.

2.7. Выбор тахогенератора в цепи ОС по скорости

Применяем тахогенератор типа ПТ-42 с номинальной частотой вращения nтг ном=100 об/мин и номинальным напряжением Uтг ном=230В 2.

2.7.1. Максимальное напряжение на выходе тахогенератора Uтг max определим по формуле:

Uтг=Uтг ном(nдв ном/nтг ном)=230(63/100)=145, (2.28)

где Uтг ном - номинальное напряжение тахогенератора, В;

nдв ном - номинальная частота вращения двигателя, об/мин;

nтг ном - номинальная частота вращения тахогенератора, об/мин.

2.7.2. Передаточный коэффициент ктг рассчитаем по формуле:

ктг=Uтг max/nдв ном=145/63=2,3 В/(об/мин). (2.29)

3. АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ ЭЛЕКТРОПРИВОДОМ

На основе технических решений принятых на первом [1] и втором [2] этапах проектирования, выбирают регуляторы тока, скорости и другие технические средства, составляющие систему автоматического управления электроприводом.

Таблица 3.1.

Наименование величин.

Обозначение.

Подъёмная машина

Суммарный маховый момент

GD2=9150 кгм2

Нормальное ускорение и замедление

а 1 = а 3 =0,6 м/с2

Максимальная скорость

v max=16 м

Диаметр шкива трения

D шт =5 м

Двигатель

Номинальный момент

М ном = 774 кНм

Номинальная частота вращения

n ном = 63 об/мин

Суммарное сопротивление якорной цепи

R я = 0,00348 Ом

Суммарная индуктивность якорной цепи

L я = 0,08 мГн

Индуктивность сглаживающего дросселя

L р = 0,5 мГн

Номинальный ток

I я ном = 5740 А

Эффективный ток

I эф = 4906 А

Максимальный ток

I я max = 7610 А

Номинальное напряжение

U ном = 930 В

Номинальная мощность

P ном = 5000 кВт

Число полюсов обмотки якоря

2р = 16

Число параллельных ветвей обмотки якоря

2а = 16

Число активных проводников обмотки якоря

N =

Номинальный магнитный поток

Ф ном = 37,5 Вб

Номинальное напряжение возбуждения

U в.ном = 200 В

Номинальный ток возбуждения

I в.ном = 145 А

Сопротивление обмотки возбуждения

r в = 0,87 Ом

Индуктивность обмотки возбуждения

L в = 3,1 Гн

Передаточный коэффициент тахогенератора

К тг = 2,3 В/об/мин

Постоянная времени обмотки возбуждения

Т в = 3,06 с

Номинальный ток шунта

I ш = 200 А

Тиристорный преобразователь

Постоянная времени

Т м = 0,02 с

Максимальное выпрямленное напряжение

U d max = 660 В

Коэффициент передачи

К тп = 82,5

Тиристорный возбудитель

Постоянная времени

Т вм = 0,02 с

Максимальное выпрямленное напряжение

U d max = 1050 В

Коэффициент передачи

К тв = 131,25

Коэффициент форсировки

К ф = 3,06

Система электропривода

Коэффициент пропорциональности между эдс и скоростью

К v = 55 В/(м/с)

Коэффициент пропорциональности между усилием и током якоря

К F = 52 Н/А

Суммарная приведенная масса

m п = 188103 кг

3.1. Расчет системы подчиненного регулирования координат

электропривода

Рассчитаем параметры САУ на основе элементов УБСР-АИ, входящих в состав комплектного электропривода КТЭУ.

Система построена по принципу подчиненного регулирования с зависимым регулированием тока возбуждения от тока якорной цепи при значениях тока якорной цепи менее 0,5Iдв ном .

Расчет конкретных параметров САУ произведем, используя структурную схему, построенную по математическому описанию электромеханических процессов в абсолютных единицах.[3]

При расчете принимаем следующие допущения:

- механическая система представляется в виде одномассовой системы;

- демпфирующее действие вихревых токов в шихтованной станине электродвигателя не учитывается.

3.2.Расчет контура регулирования тока возбуждения

Структурная и функциональная схемы контура регулирования тока возбуждения представлены на рис.3.1.

3.2.l. Постоянная времени фильтра Тфв рассчитывается по формуле:

(3.1)

где к=56 - коэффициент, учитывающий уменьшение уровня пульсаций [3];

m=6 - пульсация сигнала за период для мостовой схемы;

f=50 Гц - частота питающей сети.

3.2.2. Постоянная времени контура тока возбуждения Т в:

Тввфв=0,02+0,0025=0,0225 с, (3.2)

где Т в - постоянная времени тиристорного возбудителя, с;

Тфв - постоянная времени фильтра, с.

3.2.3. Параметры фильтра (Rф ф ):

Сффв/Rф=0,0025/100=2510-6 Ф, (3.3)

где Rф=10100 Ом - сопротивление фильтра;

Сф - емкость фильтра.

3.2.4. Передаточный коэффициент цепи обратной связи Кв:

(3.4)

где Rзтв и Rтв - входные сопротивления регулятора (Rзтв=Rтв);

Uдтв=10В - напряжение выхода датчика тока при номинальном токе Iв ном .

3.2.5. Статическую ошибку Iв для пропорционального регулятора определим по формуле:

(3.5)

где Iв ном - номинальный ток возбуждения, А;

Тв - постоянная времени обмотки возбуждения, с;

атв=2 - коэффициент настройки контура, принимаемый по условию модульного оптимума [3];

Тв - постоянная времени контура тока возбуждения, с.

Решение: Реализовать условие Uдв=Uдтв и выбрать значение входных сопротивление регулятора тока возбуждения:

Rзтв=Rтв=10 кОм

3.2.6. Требуемый коэффициент датчика тока Кдтв определим по формуле:

(3.6)

где Iш ном - номинальный ток шунта, А;

Iв ном - номинальный ток возбуждения, А;

Кв - передаточный коэффициент цепи обратной связи;

Кшв=Uш ном /Iш ном - коэффициент шунта.

Предварительно применим ячейку датчика тока типа ДТ-3АИ(УБСР-АИ), коэффициент передачи которого регулируется в пределах 53,3133,3. Для уменьшения требуемого коэффициента датчика тока применить два шунта типа 75ШСМ 200А, соединенных параллельно друг другу 3.

3.2.7. Сопротивление обратной связи регулятора тока возбуждения Rотв вычислим по формуле:

(3.7)

где Rзтв - входное сопротивление регулятора тока возбуждения, Ом;

Тв - постоянная времени обмотки возбуждения, с;

rв - сопротивление обмотки возбуждения, Ом;

атв - коэффициент настройки контура на модульный оптимум;

Тв - постоянная времени контура тока возбуждения, с;

Ктв - передаточный коэффициент тиристорного возбудителя;

Кв - передаточный коэффициент обратной связи.

3.2.8. Установившиеся уровни выходного напряжения регулятора тока возбуждения для номинального и форсированного режимов Uртв ном Uртв ф рассчитаем по формулам:

(3.8)

где Uв ном - номинальное напряжение обмотки возбуждения, В;

Ктв - передаточный коэффициент обмотки возбуждения;

Кф - коэффициент форсировки.

Окончательно выберем ячейку датчика тока ДТ-3АИ (УБСР-АИ).

3.3. Расчет контура регулирования тока якорной цепи

Структурная и функциональная схемы контура регулирования тока якорной цепи представлена на рис.3.2.

3.3.1. Постоянную времени фильтра Тфт на входе датчика тока рассчитываем по формуле:

(3.9)

где к=56 - коэффициент, учитывающий уменьшение уровня пульсаций [3]

m=12 - пульсация сигнала за период для двойной трехфазной мостовой схемы;

f=50Гц - частота питающей сети.

3.3.2. Емкость Т-образного фильтра рассчитаем по формуле:

Сффт/Rф=0,00125/100=12,5 мкФ, (3.10)

где Rф - сопротивление, принимаемое в пределах 10100 Ом.

3.3.3. Эквивалентную не компенсируемую постоянную времени контура тока вычислим по формуле:

Тттфт=0,02+0,00125=0,02125 с, (3.11)

где Тт=0,02с - постоянная времени тиристорного преобразователя.

Решение: примем согласованное управление током якоря Iя и током возбуждения Iв в функции напряжения на выходе регулятора скорости Uрс.

Применим условие начала реверсирования Iв/Iя=0,5I, т.е. уровень тока якоря, с которого начинается изменение тока возбуждения, составляет

iя рев=0,5.

3.3.4. Допустимое значение скорости изменения тока якоря рассчитывается по формуле:

(3.12)

где Кп=2 - коэффициент, учитывающий перегрузку по току якоря [3];

Тв - постоянная времени обмотки возбуждения двигателя, с;

Кф - коэффициент форсировки;

iя рев - относительное значение тока якоря, при котором начинается изменение тока возбуждения (реверс).

3.3.5. Максимальное значение параметра настройки регулятора тока ат определяется из условия:

(3.13)

Решение: Параметр настройки регулятора тока принять по условию модульного оптимума, т.е. ат=2.

3.3.6. Передаточный коэффициент обратной связи контура тока определяются по формуле:

(3.14)

где Rзт и Rт - входные сопротивления регулятора тока, отношение которых принимается равным единице;

Uдт max - не должно превышать 15 В (напряжение питания УБСР-АИ)

3.3.7. Коэффициент шунта определяется по паспортным данным:

Кш=Uш ном /Iш ном=0,075/10000=7510-6 В/А, (3.15)

где Uш ном=75 мВ для шунта 75 ШСМ 3;

Iш ном - номинальный ток шунта.

3.3.8. Коэффициент датчика тока определяется по формуле:

(3.16)

3.3.9. Параметры регулятора тока вычисляем по формуле:

(3.17)

Rотяот=0,0810-3/(210-60,01438)=2,78 кОм,

где Тит - постоянная времени интегральной части ПИ-регулятора, с;

Сот=23мкФ - емкость обратной связи регулятора токам [3];

Тя=Lя/Rя - постоянная времени якорной цепи, с;

Ктп, Rя, Lz - заданные величины.

3.3.10. Постоянная времени интегратора:

(3.18)

где iя max=Iя max /Iя ном=7610/5740=1,33.

3.3.11. Коэффициент усиления нелинейного элемента в линейной зоне:

(3.19)

3.3.12. Сопротивление обратной связи R3 при R1=10 кОм:

R3=R1Кнэ=10Кнэ=1035,3=353 Ом. (3.20)

3.3.13. Входное сопротивление R4 для усилителя У2 при С1=3 мкФ:

R4=Тип/С1=3/(310-6)=100 кОм. (3.21)

3.3.14. Напряжение ограничения усилителя У1:

(3.22)

3.3.15. Входное сопротивление R2 для усилителя У1:

R2=R1=10 кОм. (3.23)

3.4. Расчет контура регулирования скорости

3.4.1. Максимальное значение приращения движущего усилия Fст max определяют из условия:

Fст max 0,1F1=0,1339400=33,94 кН, (3.24)

где F1 - движущее усилие, равное статическому в начальный момент времени, Н.

Решение: Примем максимальное значение движущего усилия, при котором в замкнутой системе регулирования скорость не должна изменится более, чем на 1%:

Vmax=0,0116=0,16 м/с. (3.25)

3.4.2. Абсолютное значение статической ошибки в замкнутой системе управления Vа определим по формуле:

(3.26)

где ас=2 - параметр настройки регулятора скорости [3];

Тс2тфт)+Тфс=4(0,02+0,0125)+0,02=0,15 с - эквивалентная не компенсируемая постоянная времени контура скорости, с;

ат=2 - параметр настройки регулятора тока [3];

Т=0,02с - постоянная времени тиристорного преобразователя [3];

Тфт - постоянная времени фильтра на входе датчика тока, с;

- постоянная времени фильтра на входе датчика скорости, с;

К=3 - кратность уменьшения пульсации напряжения тахогенератора [3];

- частота полюсных пульсаций тахогенератора, Гц;

КК, КV - заданные величины;

Тм - электромеханическая постоянная времени электропривода, с; m, R - ранее рассчитанные величины.

3.4.3. Относительное значение статической ошибки при установившемся режиме в замкнутой системе определим по формуле:

V%=(Va/Vmax)100%=(0,054/16)100=0,34 1%. (3.27)

3.4.4. Время регулирования определили по формуле:

(3.28)

где =0,03 - допустимая динамическая ошибка по скорости 3;

Vmax - максимальная скорость движения подъемных сосудов, м/с;

аmax - максимальное ускорение в период разгона и замедления, м/с2.

3.4.4. Масштаб времени Z определили по формуле:

Z=tрег/tнор=3/6=0,5 с, (3.29)

где tнор=6 с - нормированное время переходного процесса [3].

Принимаем график переходного процесса для параметров Z=0,5, т=0,15 5.

3.4.5. Параметры настройки двухкратноинтегрирующего контура скорости определяем из условия равенства выражений:

всас2ат22=2,5Z2; всасат=2,5Z. (3.30)

Отсюда вс=2,5; ас=Z/(ат)=0,5/(20,15)=1,7. (3.31)

Решение: Приняли структурную и функциональную схемы контура регулирования скорости (рис.3.3)

3.4.6. Коэффициент обратной связи по скорости рассчитали по формуле:

(3.32)

где Rзс=Rс;

Uдс - напряжение, В, снимаемое с датчика скорости при скорости подъема Vmax , м/с.

Используем ячейку датчика напряжения ДН-2АИ (УБСР-АИ), и присоединим его вход к выходу тахогенератора с помощью делителя напряжения Rд и Rд. Принять Uдс=Vmax 3.

3.4.7. Напряжение, снимаемое с тахогенератора, определили по формуле:

(3.33)

где Uтг ном - номинальное напряжение тахогенератора, В;

nтг ном - номинальная частота вращения тахогенератора, об/мин;

nдв ном - номинальная частота вращения двигателя, об/мин.

3.4.8. Полное сопротивление делителя напряжения определим по формуле:

Rд=Uтг/Iтг ном=149,5/0,1=1,5 кОм, (3.34)

где Iтг ном - номинальный ток тахогенератора, А.

3.4.9. Мощность резисторов:

Pд=UтгIтг ном=149,50,1=14,95 Вт. (3.35)

(3.36)

Условие согласования: Rд=2400/10=240 Ом, (3.37)

где Rвх д=2,4кОм - входное сопротивление датчика ДН-2АИ(УБСР-АИ)

Передаточная функция ПИ-регулятора скорости имеет вид:

(3.38)

3.4.10. Параметры ПИ-регулятора скорости:

(3.39)

Условие жесткости подъемных канатов:

так как Кпс10 необходимо принять демпфирующий коэффициент

(3.40)

где Кпс=10 [3].

3.4.11. Постоянная времени интегральной части ПИ-регулятора скорости:

(3.41)

Применим ячейку регулятора скорости РС-1АИ (УБСР-АИ).

3.4.12. Входные сопротивления регулятора скорости (Сос=2мкФ):

Rзс=Rсисос=0,03/(210-6)=15 кОм. (3.42)

3.4.13. Сопротивление обратной связи регулятора скорости:

Rос=RзсКпс=1500021,4=321 кОм. (3.43)

3.4.14. Параметры фильтра на входе регулятора скорости:

ТфсасТс=2,51,70,15=0,64 с; (3.44)

Сфсф/(0,5Rзс)=0,64/(0,515000)=0,85 мкФ. (3.45)

4. Список используемой литературы

1. Родченко А.Я., Евсеев Ю.В. Автоматизированный электропривод многоканатной подъемной установки. Ч.1. Механическая часть электропривода: Учеб.пособие /Норильский индустр. ин-т.- Норильск, 1996.-44с.

2. Писарев А.И., Родченко А.Я. Автоматизированный электропривод многоканатной подъемной установки. Ч.2. Система «управляемый выпрямитель - двигатель» с реверсом возбуждения двигателя. Силовые элементы электропривода: Учеб.пособие /Норильский индустр. ин-т.- Норильск, 1996.-48с.

3. Писарев А.И., Родченко А.Я. Автоматизированный электропривод многоканатной подъемной установки. Ч.3. Система «управляемый выпрямитель - двигатель» с реверсом возбуждения двигателя. Автоматическое управление электроприводом: Учеб.пособие /Норильский индустр. ин-т.- Норильск, 1996.-26с.

4. Комплектные тиристорные электроприводы:Справочник / И.Х.Евзеров, А.С.Горобец, Б.И.Мошкович и др.; Под ред. канд. техн.наук В.М.Перельмутера.- М.:Энергоатомиздат, 1988.-319с.:ил.

5. Католиков В.Е., Динкель А.Д., Седунин А.М. Тиристорный электропривод с реверсом возбуждения двигателя рудничного подъема.- М.:Недра, 1990.-382с.:ил.

6. Тиристорный электропривод рудничного подъема / А.Д.Динкель, В.Е.Католиков, В.И.Петренко, Л.М.Ковалев.-М.:Недра, 1977.-312с.:ил.

7. Александров К.К., Кузьмина Е.Г., Электротехнические чертежи и схемы.- М.:Энергоатомиздат, 1990.- 288с.:ил.

8. Католиков В.Е., Динкель А.Д., Седунин А.М. Автоматизированный электропривод подъемных установок глубоких шахт.- М.:Недра, 1983.-270с.:ил.

9. Малиновский А.К., Автоматизированный электропривод машин и установок шахт и рудников: Учебник для вузов.- М.:Недра,1987.- 277с.:ил.

10. Хаджиков Р.Н., Бутаков С.А., Горная механика:Учебник для техникумов.- 6-е изд., перераб. и доп.- М.:Недра, 1982.-407с.

Страницы: 1, 2


© 2010 РЕФЕРАТЫ