бесплатные рефераты

Методы химического анализа

Рис. 2.8. Обобщённая схема гибкой структуры аналитического прибора

1 -информационный канал;

х -входные параметры, определяющие состав и свойства анализируемых веществ;

2 -корректирующий канал;

х1 -входные параметры, которыми могут быть неконтролируемые компоненты анализируемых веществ;

3 -микропроцессорный блок.

Влияние параметров окружающей среды изучается в ходе разработки технологии или производства конкретной продукции и учитывается при создании методики её аналитического контроля. Полученные результаты реализуются в аналитических приборах с гибкой структурой проведения аналитического контроля.

2.3.5 Требования, предъявляемые к приборам аналитического контроля

В основу требований, предъявляемых к приборам, положен принцип, направленный на обеспечение эффективного использования разработанного метода аналитического контроля. Он может быть реализован при условии, если приборы будут отвечать статическим и динамическим критериям эффективности. К основным из них относятся:

точность и чувствительность (как метода так и прибора);

надёжность (как работы прибора так и проведенных измерений);

быстродействие.

На практике для выбора прибора с реализованным в нём методом применяется комплексный критерий качества, который может быть рассчитан по выражению 2.3.

Ккач = к1*Кточн + к2*Кнадёжн + к3*Кчувствит + к4*Кбыстрод , (2.3)

где: к1, к2, к3, к4 - вес каждого критерия, их сумма ровняется единице;

К - базовый критерий, отражающий точность (надежность, чувствительность, быстродействие). Выбор базовых критериев осуществляется путём экспертных оценок, либо решением задачи оптимизации.

Точность прибора зависит от внутренних и внешних факторов, влияющих на измерительный процесс, рис.2.9.

Внешние факторы:

-состояние коммуникаций;

-электрические и магнитные поля;

-персонал.

Внутренние

факторы

Температура

Давление

Концентрация

Фазовое деление

Рис. 2.9. Факторы, влияющие на качество работы аналитического прибора

Температура является одним из главных управляющих воздействий на состояние объекта контроля. Она влияет на измерения характеристик состава и свойств веществ и выражается температурной погрешностью. Повышение точности измерения достигается за счёт компенсации температурной погрешности.

Учёт температурной погрешности в автоматизированных системах возможен аппаратными и программными средствами, которые разрабатываются после изучения влияния температуры на процесс измерения. С этой целью снимаются зависимости изменения косвенных параметров от температуры и строятся соответствующие графики.

На графике, представленном в виде прямой ( y = T ), влияние температуры на процесс измерения не отмечается, поэтому в структуре аналитического прибора система компенсации температурной погрешности не предусматривается.

Из анализа других графиков следует, что влияние температурной погрешности значительное, а значит, в цепь анналитического прибора должен встраиваться соответствующий компенсатор, учитывающий температурные условия протекания технологических процессов. Встроенный компенсатор перед началом измерений всегда настраивается первым до задания режима работы аналитического канала.

Для компенсации температурной погрешности в аналитических приборах применяются три способа: классический, эталонный, программный.

Классический способ устранения температурной погрешности состоит в измерении температуры и параметра xi, расчёте по математической модели погрешности ?х ср. и значения параметра х ,выражение 2.3.

x = xi - ?х ср (2.3)

Для реализации этого способа аналитический прибор содержит усилитель с переменным температурным резистором (рис. 2.11), который преобразует величину выходного сигнала.

При реализации этого способа в микропроцессорном аналитическом приборе в него встраивается термодатчик, преобразующий температуру в код F, рис. 2.11,а. Информация в цифровой форме заводится в микропроцессор (МП), в котором по математическим моделям рассчитывается измеренное значение xi и погрешность ?х. Искомый параметр х отображается на индикаторе аналитического прибора. При наличии обратной связи погрешность используется для аппаратной компенсации измеренного значения.

Второй способ (эталонный) термокомпенсации заключается в использовании двухканальной структуры, один канал в ней является «эталонным» (сравнительным), рис. 2.12. Измеренные параметры по двум каналам сопоставляются между собой для исключения погрешности.

В микропроцессорном аналитическом приборе во второй канал включается первичный измерительный преобразователь с веществом, параметры которого нормированы.

Способ программного типа состоит из сопоставления исследуемого параметра с расчетом его по математической модели. При этом в математической модели могут использоваться температурные зависимости любого из ранее перечисленных способов (классического или «эталонные»), который подходит для данного процесса.

Для реализации третьего способа требуется достаточно мощное программное обеспечение, но он отличается точностью и скоростью получения результата.

3. Оптические методы анализа

Оптические методы аналитического контроля относятся к группе спектрометрических методов (см. тему 1). Они основаны на использовании известных законов распространения света - поглощения, рассеяния, свечения, преломления. Явления и эффекты, возникающие при взаимодействии анализируемого вещества, и электромагнитного излучения регистрируются электронными оптическими приборами - спектрофотометрами, фотоколориметрами, нефелометрами, флуориметрами, рефрактометрами, поляриметрами.

С помощью оптических методов определяются в лабораториях и контролируются на технологических линиях концентрации растворов различных веществ.

3.1 Общие сведения о спектроскопии

В основе спектроскопии лежит явление испускания электромагнитного излучения атомами или молекулами определяемого вещества.

Спектр электромагнитного излучения в зависимости от длины волн делят на ультрофиолетовую-180-400 нм (1 нанометр=10-9м), видимую-400-700нм, ближнюю инфрокрасную-700-1100нм области.

Электромагнитное излучение - свет - имеет двойственную природу - волновую и корпускулярную (волна - частица) и для его описания используют два вида характеристик - волновые и квантовые.

К волновым характеристикам относятся частота колебаний, длина волны, волновое число, а к квантовой характеристике относится энергия квантов,

Частота колебаний - н - показывает число колебаний электромагнитного излучения (света) в 1 секунду, измеряется в с-1.

Длина волны л - это путь, который проходит волной за время полного периода колебаний.

Длина волны измеряется в метрах и его долях: сантиметрах - см; миллиметрах-мм; микронах-м; миллимикронах - mм; наномикронах - нм (1нм =10-9 м = 10-7 см = 10-6 мм). Например, зеленый свет представляет собой электромагнитные излучения с длиной волны л == 500 - 550 нм или 5,0 · 10 -5 - 5,5 · 10 -6 см.

Частота колебаний и длина волны связаны между собой выражением 3.1;

(3.1)

где: С - скорость света = 3 · 108 м/с = 3 · 1010 см/с

Величина, обратная длине волны называется волновым числом - н и может быть рассчитана по выражению 3.2.

(3.2)

Для зеленого света волновое число составит

Если скорость света выражена в см/сек, длина волна в см - то частота колебаний будет выражена в герцах -- Гц.

Для зеленого света:

Энергия электромагнитного излучения определяется по выражению 3.3

E = h · н , (3.3)

где h - постоянная Планка, равная 6,62 · 10-34 Дж с

3.2 Атомные спектры

Испускание света атомами происходит, за счет изменения энергии атомов. Атомы могут обладать только строго дискретными запасами внутренней энергии: Е0, Е1, Е2 и т.д., т.е. атомы не могут иметь энергию, промежуточную между Е0 и Е1 или между Е1 и Е2. В невозбужденном, т. е. нормальном состоянии атомы обладают минимальной энергией Е0. При подведении энергии, достаточной для возбуждения атома -- электроны атома переходят на более высокий энергетический уровень Е1, Е2 и т.д. и через очень короткое время ~ 10-8 с они самопроизвольно возвращаются в нормальное состояние и освобождающая при этом энергия излучается в виде светового кванта hн.

Совокупность излучаемых частот связана с энергетическими состояниями атома. Чем меньше длина волны, тем больше волновое число или частота, тем больше энергия электромагнитного излучения.

Наблюдаемые в природе электромагнитные излучения охватывают диапазон волн от десятков километров до тысячных долей ангстрема, распределение энергий излучения по длинам волн представляет спектр, который подразделяется на ряд областей, при взаимодействии с веществом излучение каждой области изменяет состояние молекулы по-разному. Это объясняется тем, что волны разных областей спектра имеют разную энергию, эта энергия действует на атом или молекулу, находящуюся в нормальном, невозбужденном состоянии и возбуждают их.

Характер спектров, наблюдаемых при взаимодействии электромагнитного излучения и строением энергетических уровней атомов и молекул исследуемых веществ, различен.

Основными характеристиками спектров является положение линий или полос, в шкале длин волн, а также их форма и интенсивность.

Положение спектральных линий и полос зависит от расстояния между энергетическими уровнями, переходы между этими уровнями обуславливают эти линии и полосы.

Строение энергетических уровней является индивидуальной характеристикой молекул (атомов, ионов) данного вещества, поэтому по положению тех или иных линий и полос в спектре можно судить о природе вещества, взаимодействующего с излучением.

Интенсивность спектральных линий и полос определяется тем, сколько квантов излучения данной частоты поглощается, испускается или рассеивается веществом в единицу времени, т.е. сколько молекул вещества участвуют в данном квантовом переходе. Это позволяет проводить количественные определения различных веществ по интенсивности линий и полос спектра.

Таким образом, действуя на вещество электромагнитным излучением, обладающим достаточной энергией, способной возбудить атомы - можно получить через короткий промежуток времени излучение в виде светового кванта hv (ДЕ = hн )

Каждая спектральная линия отражает переход с одного энергетического уровня на другой.

Наиболее яркой в спектре будет линия, отвечающая переходу с первого возбужденного уровня на основной уровень. Линия, отвечающая этому переходу, называется резонансной. Например, у натрия

11Na Is22s22p63s1

v

^ v

v ^

v ^

v ^

^ v

При возбуждении атома натрия (нагревании, облучении и т.д.) валентный электрон (3s1) может переходить на уровни р и d, находиться на них очень короткое время и возвращаться вновь на основной. Этим переходам отвечают линии с длиной волны 588, 996 и 589, 593 нм. Это излучение окрашивает пламя в желтый цвет при введении солей натрия в пламя.

Это свойство атомов и ионов излучать свет в газообразном состоянии положено в основу методов эмиссионного и спектрального, где анализ основан на измерении длины волны, интенсивности и других характеристик излучений, испускаемых атомами за счет изменения их энергии.

Совокупность пространственно разделенных линий называют спектром.

Спектр, излучаемый раскаленными газами и парами, называется линейчатым или прерывистым, а спектр, который испускают раскаленные жидкие и твердые тела - сплошной.

Линейчатый спектр каждого элемента содержит ряд спектральных линий, соответствующих испускаемым лучам, характеризующихся определенной длиной волны л или частотой колебания н.

Наличие в спектре излучения таких линий дает возможность судить о наличии искомых элементов в исследуемом веществе, а интенсивность этих линий характеризует их количественное содержание. Цвет испускаемого или поглощаемого света зависит от длины волны. Например, наибольшая длина волны видимого света соответствует красному, а наименьшая - фиолетовому свету.

При проведении качественного спектрального анализа пользуются атласом спектральных линий.

В количественном анализе рассматривается связь между интенсивностью спектральной линии и концентрацией элемента в пробе.

3.3 Молекулярный спектр

Появление полос поглощения обусловлено дискретностью энергетических состояний частиц, которые поглощают энергию, а также от природы электромагнитного излучения. Интенсивно поглощаются кванты света, которые соответствуют энергии возбуждения частицы.

Любая молекула, в соответствии с квантовыми законами, является устойчивой в определенных стационарных состояниях. Переход молекулы из одного состояния в другое связан с получением и отдачей энергии (также как у атома).

Молекула сложная система, в молекуле имеют место различные виды движения составляющих ее частиц - колебательные и вращательные. Если молекуле сообщать разные количества энергии, действуя электромагнитным излучением, то каждому из этих количеств Е=hv - будут соответствовать различные виды спектров.

В отсутствии внешнего магнитного поля энергию молекулы можно представить выражением 3.4:

Е = Еэл + Екол + Евр , (3.4)

где:

Еэл -- электронная энергия молекулы, обусловлена движением электронов, принимающих участие в образовании связей, так и локализованных вокруг ядра.

Екол -- колебательная энергия молекулы, обусловленная колебательным движением молекул, когда при неизменном положении центра тяжести молекул - периодически изменяется положение ядер и составляющих ее частиц.

Евр -- вращательная энергия молекулы, обусловленная вращательным движением молекулы, когда периодически происходит изменение ориентации молекулы в пространстве и ее частей относительно друг друга.

Электронная энергия значительно превышает колебательную, а колебательная - вращательную.

Еэл·>> Екол > Евр

По порядку величин отношение этих энергий составляет:

,

где: mе- масса электрона;

М -масса молекулы .

Для большинства молекул mе =10-4 М = 10-5-10-5

Еэл : Екол : Езр = ~1 : 10-2 : 10-4

На основании этого можно представить энергетические уровни молекул, когда каждому электронному состоянию отвечает своя система колебательных уровней, а каждому колебательному своя система вращательных уровней:

0 Еэл

вр кол

вр кол

0 Еэл1

Чисто вращательные переходы, т.е. переход между вращательными уровнями соответствует наименьшему изменению энергии от единиц до сотен Дж /моль или 10-5 -10-3 Дж/моль.

ДЕвр = 10-5 · 10-3 Дж/моль

При этих переходах возникает чисто вращательный спектр, которому соответствует излучение микроволновой и части дальней ИК-области шкалы электромагнитных волн.

Переходам между колебательными уровнями одного и того же электронного состояния соответствует изменению энергии от единиц до сотен десятков КДж/м.

При этих переходах наблюдается колебательные спектры в ближней и дальней ИК - области.

Обычно при таких переходах изменяется и вращательная энергия молекул и происходит много переходов между вращательными подуровнями нижнего и верхнего колебательных уровней. В результате таких явлений в спектре возникает не одна линия, а совокупность близкорасположенных линий - образуя вращательную структуру колебательных полос (вращательно-колебательные спектры).

Переход молекулы из одного электронного состояния в другое составляет сотни КДж/моль, при этом возникают электронные спектры, наблюдаемые в видимой части спектра, а также в УФ - ближней и дальней.

Изменение электронного состояния молекулы сопровождается изменением колебательной и вращательной энергии, поэтому электронный молекулярный спектр состоит из совокупности колебательных полос, каждая из которых имеет вращательную структуру.

Из-за существования в молекуле переходов электронного, колебательного, вращательного - возникают и соответствующие спектры (молекулярные), они называются полосатыми.

Электронные спектры атомов газообразных веществ состоят из отдельных линий. Объясняется это тем, что атом не имеет колебательных и вращательных уровней энергии, а разрешенные значения электронной энергии - дискретны.

Спектры атомов более просты по сравнению со спектрами молекул.

Возвращение электрона в атоме из возбужденного состояния (с более высокого энергетического уровня на основной) в стабильное сопровождается выделением кванта энергии примерно равного поглощенному. Спектральные линии таких переходов лежат в области больших частот и малых длин волн.

Поглощение или испускание энергии можно определить по энергетическому состоянию молекулы в начальном и конечном энергетическом переходах, выражение 3.5.

ДЕ = Е1 - Е2 = h · v, (3.5)

где: Е1 -- начальное состояние молекулы;

Е2 -- конечное состояние молекулы;

h -- постоянная Планка (Дж/с);

v -- частота излучения, поглощаемого или испускаемого при данном переходе (с-1). Если Е2 > Е1 - происходит поглощение излучения. Если Е1>Е2 - происходит испускание (эмиссия)излучения.

Каждому переходу соответствует своя частота излучения и своя длина волны.

Каждое вещество обладает способностью поглощать лучистую энергию в виде квантов энергии, соответствующих определенным длинам волн.

В практической спектрофотометрии поглощение проводят' в ультрафиолетовой (200 - 400 нм), видимой (400 - 700 нм) и инфракрасной областях (700 - 2000 нм) спектра.

Спектрофотометрический анализ основан на определении спектра поглощения или измерении светопоглощения при строго определенной длине волны, которая соответствует максимуму кривой поглощения данного вещества.

Характер спектров, которые можно наблюдать при взаимодействии электромагнитного излучения с веществом, определяется энергией излучения и строением энергетических уровней молекул исследуемых веществ.

Основными характеристиками спектров является положение линий или полос в шкале длин волн, их форма и интенсивность.

3.4 Классификация оптических методов анализа

В оптических методах анализа используется зависимость между оптическими свойствами системы и её составом, рассматривается взаимодействие световой энергии (электромагнитного колебания) с веществом.

Поглощая электромагнитные излучения, атомы или молекулы переходят в новое состояние, возбуждённое, и избыточная энергия атомов и молекул может выделяться в виде вторичного излучения или расходоваться на повышение вращательной, колебательной и др. энергии.

В зависимости от вида частиц, поглощающих энергию и характера взаимодействия их с электромагнитным излучением, различают: атомно - абсорбционный анализ; молекулярно - абсорбционный анализ; флуориметрический (люминисцентный) анализ.

Атомно-абсорбционный анализ, основывается на том, что атом, поглощая подведённую энергию, переходит в возбуждённое состояние и примерно через 10-8 с спонтанно переходят в нормальное состояние электроны на нижележащие энергетические уровни, при этом происходит выделение (эмиссия) в виде дискретных и характеристических для каждого вида атомов электромагнитных колебаний в видимой, ультрафиолетовой или рентгеновской областях спектра. При этом спектры носят линейчатый характер. Характеристичность линейчатых спектров лежит в основе качественного эмиссионного спектрального анализа, а функциональная зависимость между концентрацией элемента в пробе и интенсивностью его спектральных линий положена в основу количественного анализа.

Молекулярно-абсорбционный анализ основан на поглощении электромагнитного излучения молекулами и сложными ионами анализируемого вещества в оптическом диапазоне спектра (ультрафиолетовой, видимой и инфракрасной областях ). В молекулярно-адсорбционной спектроскопии наблюдают и исследуют аналитические сигналы, вызванные электронными переходами внешних валентных электронов. Поглощение излучения в инфро - красной области, связанно с изменением вращения и колебания молекул. Это свойство молекул часто использует в целях идентификации различных соединений.

Анализ по поглощению и рассеиванию электромагнитного излучения взвешенными частицами анализируемого вещества подразделяется на турбидиметрию и нефелометрию. При прохождении света через дисперсную гетерогенную систему происходит ослабление светового потока в результате рассеивания и поглощения этого потока частицами дисперсной фазы, выражение 3.6.

J0 = Jn + Jр + J , (3.6)

где:

J0 -- интенсивность падающего светового потока;

Jn -- интенсивность поглощаемого светового потока;

Jр -- интенсивность рассеянного светового потока;

J -- интенсивность прошедшего светового потока.

Турбидиметрия основана на измерении интенсивности светового потока, проходящего через дисперсную систему -- J.

Нефелометрия основана на измерении интенсивности света, рассеянного дисперсной системой -- Jр.

Флуориметрический (люминесцентый) анализ, основан на измерении излучения, возникающего в результате выделения избытка энергии возбуждёнными молекулами анализируемого вещества.

Для возникновения явления люминесценции молекулы вещества облучаются и переводятся из основного в возбуждённое состояние. Энергия возбуждения должна быть достаточной для осуществления излучательного электронного перехода из возбуждённого состояния в основное. Это возможно для молекул с отрицательным устойчивым возбуждённым состоянием.

3.5. Фотометрия

Из методов молекулярного абсорбционного анализа наибольшее распространение получили фотометрические методы анализа -- фотометрия. Они основаны на избирательном поглощении электромагнитного излучения молекулами анализируемого вещества.

В зависимости от используемой аппаратуры в фотометрическом анализе различают спектрофотометрический и фотоколориметрический методы анализа. Спектрофотометрический метод анализа заключается в поглощении монохроматического излучения, в котором все волны имеют одинаковую частоту -- г или длину волны -- л, а фотоколориметрический - поглощении полихроматического излучения.

Оба эти метода основаны на общем принципе существования пропорциональной зависимости между светопоглощением и концентрацией поглощающего вещества, являющегося однородной системой.

Любое вещество, способное отражать или поглощать электромагнитное излучение оптического диапазона (л = 400 -- 700 нм), имеет окраску. Непрерывное электромагнитное излучение в области длин волн 400 -- 700 нм воспринимается глазом как белый цвет.

Окраска раствора обусловлена цветом той части светового потока (потока электромагнитного излучения), которая прошла через раствор непоглощённой. Визуально наблюдаемый цвет раствора является дополнительным к цвету поглощённого излучения.

Например, раствор, поглощающий жёлто-зелёную часть спектра, имеет длину волны л = 560 -- 570 нм, табл. 3.1.

Сущность фотометрии заключается в том, что определяемое вещество переводится в окрашенное состояние и с помощью оптического прибора определяется степень поглощения (электромагнитного излучения) окрашенным соединением, которая зависит от концентрации определяемого вещества. Основные оптические характеристики окрашенных растворов -- цвет раствора и интенсивность окраски.

Фотометрический метод количественного анализа основан на способности определяемого вещества или его окрашенной аналитической формы поглощать электромагнитные излучения. Поглощение при определённой длине волны является материальным воплощением информации о качестве и количестве определяемого вещества, составляет аналитический сигнал. Возможность получения волны является материальным воплощением информации о качестве и количестве определяемого вещества, составляет аналитический сигнал. Возможность получения множества интенсивно окрашенных органических и неорганических соединений расширяют границы применения фотометрических определений в видимой области спектра с помощью довольно несложных и относительно недорогих приборов.

Таблица 3.1

Цвет раствора в зависимости от поглощённой части спектра

Спектральный

диапазон поглощённой части, нм

Цвет поглощённой части света

Кажущийся цвет

(дополнительный)

400 - 450

Фиолетовый

Жёлто-зелёный

450 - 480

Синий

Жёлтый

480 - 490

Зелёно-синий

Оранжевый

490 - 500

Сине-зелёный

Красный

500 - 560

Зелёный

Пурпурный

560 - 575

Жёлто-зелёный

Фиолетовый

575 - 590

Жёлтый

Синий

590 - 625

Оранжевый

Зелёно-синий

625 - 750

Красный

Сине-зелёный

Фотометрические методы анализа высоко чувствительны и избирательны, а используемая в них аппаратура разнообразна. Эти методы широко применяются:

в системах автоматического контроля технологических процессов и готовой продукции;

при анализе исходных материалов в химической и металлургической промышленности, а также горных пород и природных вод;

при контроле продукции в сертификационных лабораториях,;

при экологической проверке состояния окружающей среды (воздуха, почвы, воды);

при диагностировании состояния людей и животных;

при определении примесей (10-4 - 10-6 %) в веществах высокой чистоты.

3.5.1 Основной закон светопоглощения -- закон Бугера - Ламберта - Бера

Атом, ион или молекула вещества, поглощая квант света, переходит в более высокое энергетическое состояние. Обычно это -- переход с основного, невозбуждённого уровня на один из более высоких уровней, чаще всего на первый возбуждённый уровень.

Если часть излучения поглощается веществом, то интенсивность излучения, по мере прохождения через слой вещества, падает.

Закон Бугера - Ламберта - Бера -- основной закон светопоглощения связывает уменьшение интенсивности света, прошедшего через слой светопоглощающего вещества с толщиной его слоя и концентрацией в растворе.

Механизм поглощения монохроматического излучения, проходящего через стеклянный сосуд с раствором, проиллюстрирован на рис. 3.1.

J0 Jn J

Рис. 3.1. Прохождение света через раствор, заключённый в стеклянный сосуд

При прохождении светового потока J0 через слой раствора, заключённого в сосуд, его мощность ослабляется. К факторам, влияющим на ослабление светового потока, относятся:

отражение стенками сосуда - Jотр ;

поглощение окрашенным раствором - Jп;

рассеивание взвесями, содержащимися в растворе - Jр. Мощность выходящего из сосуда пучка света всегда будет меньше на величину потерь ( Jотр + Jп + Jр ), выражение 3.7.

J = J0 - ( Jотр + Jп + Jр ) (3.7)

Ослабление светового потока происходит главным образом за счёт поглощения световой энергии раствором. В лабораторной практике при изучении поглощения света растворами пользуются одинаковыми кюветами, для которых мощность отражённой части светового потока заведомо известна, как правило, постоянна и настолько мала, что ею пренебрегают. При работе с истинными растворами достаточно чистых веществ потери мощности света за счёт рассеяния также незначительны, поэтому выражение 3.7 может быть записано более упрощённо (выражение 3.8).

J = J0 - Jп 3.8

Мощность падающего светового потока J0 и прошедшего через раствор светового потока J могут быть измерены экспериментальным путём. Величина потерь рассчитывается по выражению 3.9.

J / J0 = Т (3.9)

Отношение J / J0 указывает на степень пропускания раствором светового потока и называется прозрачностью, а иногда пропусканием раствора. Коэффициент Т показывает, какая доля светового потока прошла через раствор, и принимает значение от 0 до 1.

Чем больше поглощается световой поток, тем меньше J по сравнению с J0, тем больше величина коэффициента Т.

Величина обратная прозрачности (выражение 3.10) называется непрозрачностью или поглощением раствора. Отношение мощности света, поглощенного раствором, к мощности падающего света ( Jn / J0 ), называется поглощающей способностью.

1 / Т = J0 / J (3.10)

Логарифмированием выражения 3.10 рассчитывается оптическая плотность раствора (выражение 3.11). Она показывает степень поглощения излучения в зависимости от толщины слоя раствора и его окраски.

?g J0 / J = Д = ?g пL = L ?g n , (3.11)

где: L - толщина поглощающего слоя;

?g n - постоянная величина, характерная для конкретного окрашенного раствора при прохождении через него света определённой длины;

Д - оптическая плотность (эту величину также называют абсорбционностью).

Выражение 3.11 отражает закон Бугера - Ламберта: слои вещества одинаковой толщины при прочих равных условиях всегда поглощают одинаковую долю падающего на них светового потока. Оптическая плотность вещества прямо пропорциональна толщине поглощающего слоя.

Позднее Бером было установлено, что поглощение света газами и растворами зависит от числа частиц в единице объёма, встречающихся на пути светового потока, т. е. от концентрации вещества в исследуемом растворе.

Закон Бугера - Ламберта - Бера устанавливает зависимость интенсивности поглощения света от концентрации вещества в растворе (С), толщины светопоглощающего слоя раствора(L) и молярного коэффициента поглощения света ( е). Математическое выражение оптической плотности может быть представлено выражением 3.12. Оно получено экспериментальным путём, правильность его подтверждается с помощью математического аппарата.

Д = е L С (3.12)

Объединённый закон Бугера - Ламберта - Бера является основным законом поглощения света растворами, он трактуется следующим образом: оптическая плотность раствора зависит от концентрации и природы исследуемого вещества, а также толщины слоя раствора, через который проходит световой поток (поток электромагнитных колебаний).

Для наглядности зависимость оптической плотности от концентрации вещества в растворе принято выражать графически, рис. 3.2. Она представлена прямой линий, идущей из начала координат и соответствует уравнению

D = k C ,где k = е L ,а е = k / 2,3.

Молярный коэффициент светопоглощения представляет оптическую плотность одномолярного раствора при толщине слоя светопоглощающего раствора 1 см.

е = Д / LС (3.13)

Если С = 1 моль/л, L = 1 см, то Д = е

Величина молярного коэффициента поглощения е:

зависит - от длины волны проходящего света, температуры раствора и природы растворённого вещества;

не зависит - от толщины поглощающего слоя и концентрации растворённого вещества.

Д

б

Д3

tgб = е

Д2

Д1

C1 C2 C3 C

Рис. 3.2. Зависимость оптической плотности от концентрации вещества

3.5.2 Молярный коэффициент светопоглощения

Молярный коэффициент светопоглощения отражает индивидуальные свойства вещества (окрашенного) и является их характеристикой. Для разных веществ он имеет различную величину. У слабоокрашенных веществ (например, хромат калия) молярный коэффициент светопоглощения составляет 400 - 500, а у сильноокрашенных (например, дитизонат цинка) - 94 000.

Следует иметь в виду, что значение молярного коэффициента поглощения, как правило, не превышает значения 100 000 - 120 000 для наиболее интенсивно окрашенных соединений. Его значение определяется экспериментально спектрофотометрическими методами.

Молярный коэффициент светопоглощения является характеристикой чувствительности фотометрических реакций, чем больше его величина, тем чувствительнее и точнее определение. При выборе реактивов, дающих цветовую реакцию с определяемым веществом, выбирают тот, который образует соединения с максимальным коэффициентом светопоглощения.

Из закона Бугера-Ламберта-Бера вытекают два вывода, которые имеют практическое значение.

Первый вывод. При одинаковой интенсивности окраски одного и того же вещества их концентрации обратно пропорциональны толщине поглощающих слоёв.

Доказательство. Предположим, что имеются два раствора одного и того же вещества, но с разной концентрацией. Согласно закону Бугера-Ламберта-Бера (см. выражение 3.11) оптическая плотность (Д) каждого раствора может быть представлена следующими математическими выражениями:

?g = еL1C1 ?g = еL2C2

Принимая во внимание, что исследуемые растворы одинаково освещены, т. е. на них воздействует световой поток интенсивностью равной J0. Выравнивание световых потоков (J1 = J2), прошедших через растворы может быть достигнуто подбором толщин просвечиваемых растворов L1 и L2. Исходя из этого, имеют место следующие равенства:

?g = ?g следовательно еL1C1 = еL2C2, а так как е1 = е2 тогда L1C1 = L2C2.

Таким образом -- при одинаковой интенсивности окраски одного и того же вещества их концентрации обратно пропорциональны толщине поглощающих слоёв.

Второй вывод. При условии равенства толщин исследуемого раствора и стандартного раствора одного и того же вещества (L1 = L2) зависимость между их оптической плотностью и концентрацией прямопропорциональна:

=

Оптическая плотность раствора, содержащего несколько окрашенных веществ, обладает свойством аддитивности, которое называют законом аддитивности светопоглощения (аддитивность-лат. additio прибавление-результат получаемый путём сложения). В соответствии с этим законом поглощение света, каким - либо веществом не зависит от присутствия в растворе других веществ, так как каждое из окрашенных веществ будет вносить свою величину в экспериментально определяемую оптическую плотность -- Д.

Д = Д1 + Д2 + Д3, т. к. L-const, то имеет место сумма (е1C1 + е2C2 + е3C3)

3.5.3 Спектры поглощения

Все окрашенные соединения характеризуются избирательным поглощением света.

Для характеристики окрашенных растворов различных окрашенных соединений пользуются их спектрами поглощения -- кривыми светопоглощения, которые определяют зависимость оптической плотности Д или молярного коэффициента поглощения е от длины волны л или частоты г

Д = f(л) Д = f(г)

е = f(л) е = f(г)

Для получения такого спектра (кривой светопоглощения) в таких координатах -- проводят серию измерений оптической плотности или молярного коэффициента светопоглощения при различных длинах волн, измерение проводится вначале через 10 - 20 нм, а после границы максимума измеряют через 1 - 2 нм.

Поглощение света измеряют в оптическом диапазоне спектра в ультрафиолетовой (185 - 400 нм), видимой (400 - 760 нм) и инфракрасной (760 - 1000 нм) областях спектра. Кривые светопоглощения снимают с помощью спектрофотометров, рис 3.3.

У окрашенных веществ максимум поглощения света, в большинстве случаев, находится в видимой области спектра (? 500 нм), но не может быть смещен в ультрафиолетовую область (K2CrO4), а также может смещаться и в инфракрасную -- (CuSO4).

Страницы: 1, 2, 3, 4, 5, 6, 7


© 2010 РЕФЕРАТЫ