бесплатные рефераты

Жаропрочные сплавы

Данная деталь имеет симметричную форму, выполнена из сплава ЭИ868. Изделие предполагается выполнять штамповкой на винтовом фрикционном прессе, затем поковку обрабатывают в механическом цехе до размеров чистовой детали. Эскиз чистовой детали показан на рис 1. На основе чертежа чистовой детали можем сделать вывод о том, что деталь относится к первой группе сложности, и может быть изготовлена горячей объемной штамповкой в открытом штампе [4, 7].

4.3 Проектирование чертежа горячей штамповки детали "фланец" из сплава ЭИ868

Объемной штамповкой называется процесс ОМД, заключающийся в деформирование заготовки, в результате чего металл заполняет полость инструмента - штамп, называемую ручьем, профиль которой в сомкнутом состоянии штампа соответствует требуемой форме с учетом термической усадки материала изделии.

Объёмная штамповка обеспечивает более высокую производительность, точность формы и размеров поковок, идентичность их при производстве крупных партий, меньше утомляет рабочего и меньшей степени связана с его квалификацией, легче поддается механизации и автоматизации, чем другие процессы обработки металлов давлением, например ковка.

Штамповочные процессы можно классифицировать по типу применяемого штампа:

- штамповка в открытых штампах;

- штамповка в закрытых штампах.

Штамп называется открытым, если профиль штамповки формируется в обеих половинах штампа и при этом часть металла может вытекать на плоскость разъёма. Если бы открытый штамп не имел облойной канавки, то возможные колебания объема заготовки приводили бы к недоштамповке по высоте или недооформлению детали. Поэтому во всех случаях штамповка производится с облойной канавкой, в которую вытесняется "лишний" металл [4, 6, 7]

Штамп считается закрытым, если профиль штамповки формируется в одной половине штампа (обычно в нижней), которую в этом случае называют матрицей. Избыток металла может выходить в зазор пуансон - матрица, если позволяет величина зазора. Удаление поковки из ручья открытого штампа производится клещами или выталкивателем.

Чертеж штамповки составляют по чертежу готовой детали. Контур готовой детали наносят либо пунктирной, либо тонкой сплошной линией, а размеры готовой детали наносят либо в скобках под соответствующими размерами штамповки [1].

4.3.1 Назначение допусков и припусков

Все штампованные заготовки, как правило, подвергают последующей механической обработке. Степень точности штамповочных заготовок количественно определяется двумя факторами:

- припусками на механическую обработку;

- допусками на размеры.

Припуски на механическую обработку, связанны с необходимостью достижения нужной точности и чистоты. Величина этих припусков определяется требуемой чистотой и точностью поверхности после механической обработки, а также искажением формы, имеющем место при горячей штамповке (смещение, коробление, дефекты на поверхности в виде зажимов).

Величину припусков назначают по наибольшему габаритному размеру детали, в зависимости от материала и требуемой чистоты. Для детали типа "фланец" из сплава ЭИ868, шестого класса точности, и наибольшего габаритного размера 25,5 мм имеем [7,10 ]:

нижний (отрицательный) допуск на размеры составляет - 0,6 мм;

верхний (положительный) допуск на размер составляет + 1 мм.

Штамповкой нельзя получить абсолютно точной поковки, поэтому назначаются допуски, которые учитывают недоштамповку поковки по высоте, износ ручья штампов и другие факторы. Согласно техническому заданию на производство детали типа "фланец" из сплава ЭИ868 допускаются коробления до 0,35 мм, остаток от облоя до 0,4 мм, смещение на линии разъема штампов до 0,2 мм. На основе этих данных назначаем припуски на механическую обработку согласно табличным данным [1,7].

4.3.2 Назначение напусков

Напуски на штамповки в виде штамповочных уклонов, радиусов закруглений регламентируются нормами. Штамповочные уклоны назначаются на поверхности поковки. Они необходимы для того, чтобы поковку можно было быстро и легко извлечь из полости штампа после штамповки. Однако их величина должна быть минимальной, так как уменьшение способствует снижению массы поковки, уменьшению напуска, облегчению заполнения окончательного ручья и увеличения его стойкости. Штамповочные уклоны можно уменьшить за счет применения в штампе выталкивателя. Согласно данным [1,7] уклоны при штамповке на фрикционных прессах берутся гораздо меньшими, чем при формировании аналогичных деталей штамповкой на молотах. В данном конкретном случае для штампуемой детали уклоны принимаем равными 50.

4.3.3 Назначение радиусов скругления

При конструировании поковок предусматриваются наружные радиусы закруглений R, необходимые для предотвращения концентрации напряжений и образования трещин в углах ручья штампа, снижения усилий, необходимых для заполнения углов полости штампа.

Радиусы закруглений внутренних узлов поковки r влияют на условия течения металла, стойкость штампа и качество поковок. На основе справочных данных назначаем углы скругления [1,7], определяемые на основе размеров штампуемой детали, вида штамповки, температуры деформирования и вида технологического оборудования.

На основе назначаемых припусков, допусков, штамповочных уклонов и радиусов закруглений получаем из чертежа готовой детали типа "фланец" (рис.1.) чертеж штампованного полуфабриката. Эскиз чертежа штампованного полуфабриката, при комнатной температуре представлен на рис.5.

Чертеж штампованного полуфабриката детали типа "фланец".

Рис.5.

4.4 Расчет размеров и массы заготовки

Основные потери металла при штамповке будут составлять потери металла на облой, формирующейся в облойной канавке открытого штампа удаляемый на операции обрезки и угаре металла при повышенных температурах (образование окисной пленки на поверхности заготовки). Для расчета объема заготовки воспользуемся формулой:

V заг. = V шт. + V об. + V уг. (1)

где V шт. - объём штамповки, мм3;

V об. - объём облойной канавки, мм3;

V уг - объём угара металла, мм3.

Для определения объёма весь объём штамповки разделяют на отдельные элементарные объёмы. Эти объёмы рассчитываются и суммируются.

V шт. = V 1 + V 2 + V 3 (2)

где V 1 , V 2 , V 3 - элементарные объёмы штамповки, мм3.

Элементарный объём V 1 имеет форму цилиндра, поэтому он

рассчитывается по формуле:

V 1 = р · R2 · H (3)

где R - радиус цилиндра, мм;

Н - высота цилиндра, мм.

Тогда имеем:

V 1 = 3,14 · 102 · 12 = 3768 мм3.

Объём V 2 имеет форму усеченного конуса и рассчитывается по формуле:

V 2 =( р/3) · H · (Rб2 + Rм2 ) (4)

где Rб = 10 мм, Rм = 5,5 мм, Н = 12 мм.

В данном случае получим:

V 2 = ( 3,14 / 3) · 12 · (102 + 5,52 ) = 1635,94 мм3.

Объём V 3 имеет форму параллелепипеда и рассчитывается по формуле:

V 3 =А · В · С (5)

где А, В, С - стороны параллелепипеда, мм.

В данном случае получим:

V 3 =28,5 · 16,3 · 7 = 3251,85 мм3.

Теперь можем определить полный объем штамповки:

V шт. = 3768 + 1635,94 + 3251,85 = 8655,79 мм3.

Теперь можем определить массу штамповки:

m шт = V шт. · с (6)

где с - плотность сплава, г/см3.

m шт = 8655,79. · 8,88 / 1000 = 76863,42 / 1000 =76,86 гр.= 0,07686 кг.

Для расчета объёма облоя рассчитываем объем облойной канавки. Для этого выбираем облойную канавку [6, 7], изображенную на рис. 6, рассчитываем необходимые размеры и объём облойной канавки.

Схема облойной канавки.

Рис.6.

Высоту мостика канавки определяют по формуле:

2 · h3 = 0,02 · Fп (7)

где Fп - площадь проекции поковки в плане, мм2

Fп = 2403,9 мм2.

2 · h3 = 0,02 · 2493,9 = 0,98.

На основании справочных данных выбираем ближайшее большое значение 2 · h3 = 1 [6, 7]. Для этого значения высота мостика облойной канавки подбираем остальные величины ее размеров
h1 = 3 мм, R = 1 мм, L = 28 мм, l = 10 мм, S = 1,04 см2.
Теперь можем определить объём облойной канавки:
Vоб. = р · R2 · H сред. (8)
Vоб. = 3,14 · 8,7 2 · 7,4 = 1758,73 мм3.
Угар металла (потери металла на образование окалины на поверхности заготовки) как в новом, так и в старом варианте технологического процесса составляет 0,4 % от массы нагреваемого металла и его можно не учитывать.
Тогда имеем объем заготовки:
Vз = 8655,79 + 1758,73 = 10414,52 мм3.

4.5 Обоснование выбора нового оборудования

В качестве нового технологического оборудования предлагается использовать винтовой фрикционный пресс, который имеет ряд преимуществ:

- при штамповке на фрикционном прессе возможно назначение меньших допусков, припусков, напусков, чем при штамповки на молотах. Соответственно из этого следует значительное уменьшение отходов металла.

- при штамповке на фрикционных прессах, как правило, возникает меньший процент брака.

- работа фрикционного пресса производит меньше шума, чем работа молота;

- фрикционный пресс на современном этапе является более дешевым оборудованием, чем молот [6,7].

4.6 Разделка исходного материала

Заготовки требуемого качества могут быть получены разными способами отрезки. При выборе наиболее рационального способа надо учитывать вид и свойства разрезаемого материала, форму и размеры сечения, относительную длину заготовок, требования к ним, отходы металла. На выбор способа разрезки влияет годовой объем производства заготовок. Рациональным способом будет тот, который, обеспечивая получение заготовок необходимого качества, наиболее экономичен при заданном объеме производства. Самым производительным, металлосберегающим и экономичным способом разделения проката на точные заготовки является разрезка в штампах и на ножницах. Разрезка проката в штампах и на современных сортовых ножницах обеспечивает существенную экономию металла по сравнению с резкой на пилах или с отрезкой на токарных станках. Поэтому при выборе способа разрезки надо, прежде всего, рассмотреть возможности этого способа. В данном случае резка на заготовки производится абразивными кругами. Режущим инструментом при абразивной разрезке является диск из абразивных зерен и связывающего вещества, которое выполняет двоякую роль: удерживает зерна при резании и высвобождает их после изнашивания. В качестве абразива используют электрокорунд или карбиды кремния на вулканитовой или бакелитовой связке. Выпускают абразивные круги диаметром 300-600 мм, толщиной 0,5-4 мм. Для абразивной разрезки применяют станки с ручной подачей круга, полуавтоматы с механической подачей и автоматы, в которых автоматически выполняется подача материала, задается ее режим, осуществляется автоматическая подача круга и снятия материала (табл. 10).

Характеристика круга включает следующие параметры: размеры (внешний диаметр, толщину, диаметр отверстия), вид абразивного материала, зернистость, вид связки, твердость, структуру. Параметры характеристики круга выбирают в зависимости от вида разрезаемого металла, режимов резания, требований к качеству поверхности среза. Круги изготовляют на бакелитовой (Б), вулканитовой (В) иметаллической связке, армируют стеклотканью, капроном и другим материалами. Рекомендуемые параметры абразивных кругов представлены в табл. 11.

Таблица 10

Технические данные абразивно - отрезного станка модели 8552 [1].

Диаметр круга, мм.

500

Толщина круга, мм.

4-5

Скорость резания, м/с

48-80

Максимальный диаметр разрезаемого материала, мм.

100

Таблица 11

Рекомендуемые параметры абразивных кругов [1].

Разрезаемый материал

Зернистость

Вид связки

Сталь твердая углеродистая

40

В

Сталь инструментальная

40

В

Абразивный материал выбирают в зависимости от вида разрезаемого металла. Для разрезки сталей или жаропрочных сплавов рекомендуют круги из электрокорунда. Зернистость выбирают в зависимости от режима работы и требуемых шероховатости и точности поверхности реза. Для разрезания сталей применяют круги с менее крупным зерном, чем для цветных металлов. Твердость круга должна быть такой, чтобы при работе абразивные зерна выкрашивались по мере затупления, образовывались новые режущие грани и обнажались новые зерна. Преимущества абразивной разрезки: высокая геометрическая точность и малая шероховатость поверхности, среза (Rа= 0,32 - 1,25 мкм), возможность разрезки высокопрочных металлов любой твердости, высокая производительность [1].

4.7. Нагрев заготовок под штамповку

Процессы ковки и штамповки, осуществляемые при высоких температурах, можно рассматривать как совместные процессы ОМД и термического воздействия на них. Тепловые воздействия на металл приводит к потере им упругих свойств, существенному уменьшению его сопротивления деформации и к резкому повышению пластичности. В процессе горячей ОМД происходит снятие появляющихся напряжений, в частности при возврате и рекристаллизации металла.

Оптимальный режим штамповки должен обеспечить необходимые условия для успешного проведения процесса, а также высокое качество поковок, при котором вредное влияние тепла ограничивается. Поэтому термический режим разрабатывается для каждого сплава с учетом исходной структуры металла, его объёма, соотношения размеров заготовки и назначения поковки. Одной из главных задач при разработке технологического процесса является определение соответствующего температурного интервала, т. е. температуры начала и конца обработки металла. Для правильного выбора температурного интервала необходимо учитывать следующие факторы:

- Металл должен обрабатываться давлением в температурном интервале максимальной пластичности. Для этой цели для большинства сплавов построены диаграммы пластичности, представляющие собой совокупность температурных зависимостей прочностных и пластических характеристик сплава.

- Металл необходимо деформировать в состоянии, соответствующем области твердого раствора сплава без малейших признаков перенагрева или пережога и желательно заканчивать деформацию при таких температурах, чтобы не происходило вторичных фазовых превращений. Для этих целей используется анализ диаграммы состояния сплава [5].

- Деформацию следует производить при таких температурах, когда в процессе ее происходит измельчение структуры, а не рост зерен. Эта информация устанавливается при анализе диаграммы рекристаллизации сплава.

Для сплава ЭИ868 температурный интервал под горячую объемную штамповку составляет от 1130 до 1150 0С [1,3,4]. Для сплава ЭИ868 рекомендуется применять нагрев в электрической печи. Электронагрев по расходу энергии на тонну заготовок менее экономичен, чем нагрев в пламенных печах. Однако его широко применяют, так как он повышает производительность труда, позволяет провести полную автоматизацию и обеспечить высокую стабильность процесса, улучшить условия труда и сократить потери металла на окалинообразование [7].

Потеря металла в виде окалины при нагреве в печах электросопротивления составляет 0,2 - 0,4 % массы нагреваемого металла, что почти в десять раз меньше, чем при нагреве в пламенных печах. Уменьшение окалины повышает качество поковок и увеличивает стойкость штампов кузнечно-прессового оборудования. Технологические преимущества электронагревательных устройств особенно эффективны в серийном поточном производстве.

В данном технологическом процессе предлагается использовать карусельную нагревательную печь электросопротивления, температура в печи 1140 ± 5 0С, количество заготовок в печи - 50 штук. Время нагрева одной садки около 1,15 часа при разогреве печи или 0,3 часа в условиях работы с предварительно нагретой печью. Температуру в печи контролируют с помощью оптического пирометра М90 - Р1 с записью в специальном журнале. В табл. 12 приведены технические характеристики карусельной нагревательной печи.

Таблица 12

Технические характеристики печи электросопротивления [1].

Наименование характеристики

Численные значния

1

Модель печи

СНО-3,2.6,2.5/15М1

2

Атмосфера печи.

Защитная. Тип САЗ (для нагрева стальных заготовок)

3

Номинальная температура нагрева, 0С

1250-1300

4

Мощность печи, кВт

60

5

Тип вращения пода печи:

6

для нагрева мелких деталей

ковшовый

7

для нагрева до 1000 0С

тарельчатый

8

для нагрева до 1300 0С

кольцевой

9

Частота вращения пода, час-1

8-20

10

Окружная скорость пода, м/с

0,1

11

Производительность, кг/ч

200

4.8. Горячая объемная штамповка

4.8.1. Определение потребного усилия пресса и выбор технологического оборудования

В новом варианте технологического процесса штамповка производится на винтовом фрикционном прессе. Свободный ход фрикционного пресса позволяет деформировать металл в каждом ручье штампа за несколько ударов. Достигаемая при этом дробная деформация может быть в сумме даже больше деформации эквивалентного кривошипного горячештамповочного пресса. Возможность использования нижнего выталкивателя значительно расширяет номенклатуру штампуемых изделий и позволяет работать с небольшими штамповочными уклонами, а в разъёмных по вертикали матрицах - даже без уклонов для полостей, 'попадающих в плоскость разъёма. Фрикционные прессы имеют относительно большую скорость деформирования по сравнению с другими прессами, однако течение металла при штамповке на этих прессах аналогично штамповке на других прессах. В последние годы фрикционные прессы значительно модернизировали, они стали более быстроходными, а в некоторых конструкциях выполнено хорошее направление ползуна, что позволяет производить штамповку в многоручьевых штампах. В данном случае штампуется сразу две детали. В таблице 13 приведена техническая характеристика фрикционного пресса.

Определим потребное усилие пресса.

Потребное усилие пресса рекомендуется определять по формуле:

где Fп - площадь проекции поковки на плоскость, перпендикулярную

к направлению движения ползуна пресса, мм2;

Vп - объем поковки, мм3;

увt - временное сопротивление на разрыв материала поковки при

температуре конца штамповки, МПа [5];

К - коэффициент, для штамповки в открытых штампах К = 4 [1].

Тогда имеем:

В таблице 13 приведены технические параметры фрикционного пресса, рекомендуемого для горячей объемной штамповки.

Таблица 13

Технические характеристики винтового фрикционного пресса.

Наименование характеристики

Значение

показателя

1

Усилие, МН

80

2

Ход ползуна, мм

500

3

Число ходов ползуна в минуту

16

4

Наименьшее расстояние между столом и ползуном в его нижнем положении

360

5

Размеры стола, мм

730 750

6

Мощность электродвигателя, кВт

22

7

Габаритные размеры, мм

3800 2430 4970

8

Масса, кг

25000

4.8.2 Технология изготовления штампа и материалы для изготовления штампов

Штампы для горячей объемной штамповки работают в очень тяжелых условиях. Они подвергаются многократному воздействию высоких напряжений и температур. Интенсивное течение горячего металла по поверхности штампа вызывает истирание ручья, а также дополнительный нагрев инструмента. На поверхности ручья образуются так называемые разгарные трещины. Поэтому штамповые стали должны отличатся высокими механическими свойствами, сочетая прочность с ударной вязкостью, износостойкостью, разгаростойкостью и сохранять эти свойства при повышенных температурах.

Материалы для штампов должны хорошо прокаливаться при термообработке и обрабатываться на металлорежущих станках. Желательно, чтобы штамповая сталь не содержала дефицитных элементов и была дешевой.

Для изготовления штампов получили распространение стали 5ХНМ, 5ХНВТ, 5ХГМ. Полноценным заменителем дефицитных хромоникелевых сталей 5ХНМ является безникелевая сталь 4ХСМФ. Дешевыми сталями для высадочных штампов являются 4ХВ2С, 5ХВ2С, 7Х3, 8Х3.

Штамповый инструмент, как правило, изготовляют из кованных заготовок. Штамповые кубики куют из слитков. Дальнейшее изготовление штампов производится по одному из трех вариантов: полная механическая обработка - термообработка-доводка; термообработка-полная механическая обработка; предварительная механическая обработка-термообработка - окончательная механическая обработка.

По первому варианту изготовляют штампы повышенной твердости (твердость материала по Бринеллю составляет НВ>350).

По второму варианту обрабатывают крупные штампы, термообработка (НВ<320) которых вызывает коробление, что требует последующей механической обработки.

По третьему варианту изготовляют штампы средних размеров с твердостью НВ 320-350. До термической обработки формируют все рабочие полости, предварительно фрезеруют ручьи. После закалки и отпуска штампы обрабатывают твердосплавным инструментом, затем выполняют полную слесарную обработку и доводку ручьев. Направление волокна в кубике совпадает сего осью. Размеры ручьев проверяют по шаблонам.

Термическая обработка штамповых сталей состоит из закалки и отпуска. Штамп нагревают до температуры закалки (830-860 0С для стали 5ХНМ, 1030-1050 0С для - 4Х5В2ФС), затем охлаждают в масле до температуры 200-250 0С и сразу переносят в печь на отпуск (450 0С).

Основные технические условия на горячую объемную штамповку .

1. Штамповка изготавливается в полном соответствии с ОСТ1 90176-72.

2. Неуказанные радиусы R = 1,6мм.

3. Смещение по линии разъема штампа до 1,0 мм.

4. Остаток от облоя допускается до 2 мм.

5. Допускаемое коробление до 0,8 мм.

6. Неуказанные штамповочные уклоны: 50 + 1030'; 70 + 1030'.

4.8.3 Смазка штампов

Смазку наносят на рабочую поверхность инструмента или на поверхность заготовки перед ее нагревом. В первом случае смазка уменьшает трение и ограничивает отвод тепла в инструмент. Во втором случае покрытие дополнительно защищает нагреваемый металл от окисления при нагреве и снижает теплопотери заготовки за время подготовительных операций. Такие смазки называются защитно-смазочными покрытиями [7].

Технологические смазки для штамповки должны удовлетворять следующим требованиям:

1. Создавать надежную сплошную пленку в течение всего процесса деформирования.

2. Защищать заготовку от окисления и газонасыщения при нагреве и штамповке.

3. Обладать хорошими теплоизоляционными свойствами.

4. Не вступать в химическое взаимодействие с поверхностями заготовки и инструмента.

5. Легко наноситься на поверхность заготовок и допускать возможность механизации и автоматизации этой операции.

6. Легко удаляться с поверхности поковки.

7. Сохранять смазочные свойства относительно длительное время.

8. Должны быть нетоксичными, безопасными для человека и окружающей среды [1, 7].

В штамповочных цехах чаще всего применяются смазки на основе графита в виде смеси графитового порошка с жидким стеклом или минеральным маслом. В процессе штамповки на молотах поковок простой формы и небольшой массы в качестве смазки используют водный раствор поваренной соли (от 5%-го до насыщенного). Для улучшения смазочных свойств в раствор добавляют до 5% солей азотнокислого натрия (NaNO3), хлористого бария (BaCl2) или хлористого кальция (CaCl2).

Хорошие результаты могут быть получены при использовании коллоидно-графитовых препаратов В-1, В-0, ВКГС-0, ОГВ-50, ОГВ-75, графитол-2 для штамповки высоколегированных сталей. Растворы препаратов ОВГ целесообразно применять для получения поковок с преобладанием процесса осадки, графитол-2 с преобладанием процесса выдавливания.

Для точной штамповки эффективна смазка «Укринол-7». Иногда применяют графито-водяные смеси типа «Аквадаг», но в тех случаях, когда требуется охлаждение штампов [7].

В данном технологическом процессе применяется смазка следующего состава: индустриального масла «Вапор-Т»-55% + графит-45%. Схема смазки штампа приведена на плакате. Установка состоит из бака 1, мешалки 2 с электроприводом и дозирующей системой, выполненной из двух неподвижных дисков 3 и 4, стягиваемых подпружиненными стяжками 5, и поворотного диска 6 с отверстиями по периметру, расположенного между неподвижными дисками. Диск 6 насажен на вал 7, который может поворачиваться пневмоцилиндром 8. Управление пневмоцилиндром осуществляется пневмоклапаном К1, а подача сжатого воздуха в установку клапаном К2. Установка имеет четыре отвода, поэтому может одновременно смазывать от одного до четырех ручьев. Установка при ручной штамповке работает следующим образом. В бак 1 заливают суспензию графита в масле и включают мешалку 2. Отштамповав очередную поковку, штамповщик сбрасывает ее на лоток 9 через боковое окно пресса. На верхней стенке окна расположен фотоэлектрический датчик 10, который срабатывает от действия света нагретой поковки и дает команду на включение клапанов К1 и К2. Пневмоцилиндр 8 поворачивает вал 7 и связанный с ним диск 6 . При этом отверстия диска, которые заполнены смазкой, поочередно совмещаются с отверстиями в неподвижных дисках 3 и 4, и смазочный материал из них выдувается сжатым воздухом, поступающим через клапан 11 к соплам 12. Продолжительность впрыскивания и, следовательно, доза наносимого смазочного материала регулируется с помощью реле времени.

4.9 Обрезка облоя

Одной из важнейших операций в цикле технологии производства поковок является отделение или обрезка облоя. В подавляющем большинстве случаев обрезка облоя происходит в штампах, устанавливаемых на обрезных прессах. В данном случае обрезка производится на однокривошипном прессе, в обрезном штампе. Сущность процесса заключается в том, что поковка с облоем укладывается на матрицу, имеющую режущую кромку по контуру поковки. Надавливанием пуансона, укрепленного на ползуне пресса через державку или непосредственно поковка сдвигается по отношению к лежащему на матрице облою и таким образом происходит отделение поковки от облоя.

Усилие Р обрез., необходимое для обрезки облоя, можно выразить формулой:

Р обрез. =1,4Stв=1,4Fср. в (10)

где S - периметр среза, мм;

t - толщина мостика облоя равная 0,7- 0,8 от толщины мостика облойной канавки [7], мм;

в - предел прочности материала при температуре обрезки, МПа;

в = 200 МПа.

Тогда получим:

Р обрез. = 1,4 684 0,78 200 = 14 938,56 кгс = 149386 Н.

Конструкция обрезного штампа приведена в графической части работы (на плакате).

Технические характеристики используемого кривошипного пресса представлены в таблице 14.

Таблица 14

Технические характеристики обрезного однокривошипного пресса простого действия (ГОСТ 1026-87) [7].

Наименование технической характеристики

Значение

параметра

1

Модель

КН9535

2

Усилие, кН

1600

3

Ход ползуна, мм

250

4

Частота ходов, мин

60

5

Расстояние между подштамповой плитой и ползуном в его нижней половине при верхнем положении регулировки, мм

390

6

Мощность привода, кВт

18

7

Габаритные размеры, мм

2200 1900 3550

8

Масса, т

11,5

4.10 Пескоструйная обработка

После нагрева на поковках остается слой окалины, который необходимо очистить, так как этот слой препятствует последующей механической обработке и ухудшает качество поверхности поковок. Очистку поковок от окалины производят после обрезки заусенца. Существуют несколько способов очистки. Наибольшее применение имеют травление, галтовка и дробеметная очистка.

В данном случае применяется струйно-абразивная очистка. Этот способ применяют для очистки кованных и штампованных поковок от окалины. В зависимости от состояния используемого рабочего тела (сухой абразив или абразивная жидкость) струйную очистку делят на пневмо- и гидроабразивную.

Энергоносителем в обоих случаях является сжатый воздух давлением 0,2-0,5 МПа, который абразивную жидкость или сухой абразив направляет струей на обрабатываемую поковку со скоростью 30-60 м/с. Пневмоабразивный способ очистки применяют ограниченно в связи с повышенной концентрацией остатков абразивного материала и частиц окалины в воздухе на рабочем месте [7].

При гидроабразивной очистке в качестве абразивной среды используют приготовленную в специальных установках смесь абразива с водой. Состав гидроабразивной смеси: 76,5 % воды; 20 % абразива; 3,5 % кальцинированной соды. Для гидроабразивной очистки применяют следующие абразивные материалы: кварцевый песок, корунд и карбид бора [1,7]. Кварцевый песок, как менее дефицитный и недорогой, используют с размерами зерен от 0,3 до 2 мм. При диаметре сопла от 4,0 до 10,0 мм расход воздуха давлением 0,5 МПа составляет 1-6 м3/мин.

На рис.7 представлена конструкция гидроабразивного барабана периодического действия. В колокол 4 через приемное окно камеры 2 загружаются поковки 3, где производится их очистка струйным аппаратом 1. Выгрузка очищенных поковок в бункер 6 выполняют путем наклона барабана с помощью привода 5.

Схема гидроабразивного барабана [1,7].

Рис. 7.

4.11 Зачистка дефектов

Если на поверхности поковок обнаружены дефекты - окисные плены, трещины, зажимы, подрезы, расслоения, риски, то они должны быть удалены перед дальнейшей обработкой.

Крупные поверхностные дефекты удаляют газопламенной обработкой, пневматическими молотками, зачисткой шлифовальными кругами. Для удаления поверхностного дефекта на стальных заготовках используют электрокорундовые шлифовальные круги на бакелитовой связке с зернистостью 12-60. Окружная скорость шлифовальных кругов составляет 30-50 м/с. Обработанные участки поверхности должны иметь плавные переходы.

При большом числе дефектов проводят обдирку на обдирочных, фрезеровочных или строгальных станках в зависимости от формы и вида исходного металла. Если глубина дефекта превышает значения, указанные в таблице 15, то металл бракуют.

Таблица 15

Допустимая глубина зачистки дефектов (ГОСТ 1050-84) [7].

Диаметр или толщина заготовки, мм

Глубина зачистки, не более

До 80

Половина суммы предельных отклонений

80-140

Сумма предельных отклонений

140-200

5 % диаметра или толщины

Свыше 200

6 % диаметра или толщины

Выбор способа зачистки зависит от выбора исходного материала, его назначения, марки материала, вида и степени развития дефекта, формы и размера поковки. После штамповки в открытых штампах, на некоторых производствах, поковки подвергают обточке в целях удаления обезуглероженного слоя и повышения точности по диаметру. Эффективна обточка на бесцентровых токарных станках, в которых пруток поступательно перемещается сквозь вращающиеся многорезцовые головки. Производительность бесцентрового токарного станка в 3-4 раза выше производительности универсального токарного станка. В данном случае зачистка производится на шлифовальных кругах.

4.12 Правка

Штампованные поковки могут искривляться в процессе изготовления при удалении из ручья и при их транспортировке. В особенности часто поковки искривляются при обрезке заусенца и прошивке отверстий.

На изогнутых поковках при механической обработке в некоторых местах может не хватать припуска, а в других будет его избыток. Если изгиб мал и припуск всюду нормальный, или близок к нормальному, то правку не делают. В противном случае правка необходима.

В разрабатываемом технологическом процессе правку производят на винтовом фрикционном прессе, предварительно нагрев в печи при температуре 1000 - 1100 5 0С. Технические характеристики фрикционного пресса представлены в табл. 16.

Таблица 16

Технические характеристики фрикционного пресса [1]

Наименование технической характеристики

Значение параметра

1

Усилие, мН

40

2

Ход ползуна, мм

500

3

Число ходов ползуна в минуту

16

4

Наименьшее расстояние между столом и ползуном, мм

360

5

Размеры стола, мм

730 750

6

Мощность электродвигателя, кВт

22

7

Габаритные размеры, мм

3800 2430 4970

8

Масса, кг

25000

Страницы: 1, 2, 3, 4, 5


© 2010 РЕФЕРАТЫ