Анализ психолого-педагогических и методических аспектов формированию творческой личности младшего школьника
Один из принципов развивающего обучения, выдвинутой З.М.Колмыковой [29;с.26], утверждает необходимость систематично развивать как алгоритмические, так и эвристические приемы умственной деятельности. Достаточно на примере решения 2-3 задач, примеров, организовывать коллективный поиск правила, алгоритма или эвристической схемы решения.
Что касается эвристических приемов умственной деятельности, то наиболее эффективными из них являются "анализ через синтез", введенный С.Л.Рубенштейном. В психолого-педагогической литературе и в практике экспериментальных исследований вопросов формирования творческой личности рассмотрены эвристические методы учебно-творческой деятельности.
Андреев В.И. так трактует эвристические методы творческой деятельности: " Эта система эвристических правил деятельности педагога (методы преподавания) и деятельности учащихся (методы изучения), разработанных с учетом закономерностей и принципов педагогического управления и самоуправления личности с целью развития интуитивных процедур деятельности учащихся в решении творческих задач" [1;с.48].
В 30 - 40-е годы XX столетия были разработаны новые эвристические методы творческой деятельности: "мозговой штурм", метод фокальных объектов, которые ставили перед собой цель, избавится от метода проб и ошибок, который был неэффективным и громоздким.
И все же, эти новые эвристические методики не давали умственных критериев для отбора сильных решений. В формировании творческих элементов школьников большая роль принадлежит использованию на уроках математики нестандартных задач, задач творческого характера, логических и эвристических заданий, индивидуальных самостоятельных работ.
Для развития творческой личности созданы разнообразные пособия, методическая литература.
Развивать творческие способности учащихся необходимо и возможно с начальной школы. В связи с этим достаточно определить огромную роль текстовых задач, которые решаются арифметическими способами. В традиционном школьном курсе арифметики решению таких задач уделяли огромное внимание.
2.2. Приемы активизации творческой деятельности учащихся на уроках математики
2.2.1. Формирование творческих элементов у младших школьников в процессе индивидуальной работы на уроках математики
Идея индивидуального подхода к ученикам в процессе обучения принадлежит к вечным проблемам школы и является важнейшим из общедидактических принципов, необходимость реализации которого в школьной практике объясняется тем, что формирование личности ребенка возможно только путем индивидуализации обучения.
Индивидуализация обучения - это педагогический принцип системы отношений ученика с учителем. В такой системе учитываются и развиваются индивидуальные особенности каждого ученика. Особенное значение и развитие получают такие качества как: самостоятельность, инициативность или поисковый стиль деятельности, творчество и другие. Индивидуализация обучения способствует развитию способностей учащихся, учитываются их склонности и интересы, различное отношение к учению, к отдельным учебным предметам.
Определив индивидуальные возможности школьника, учитель в этой ситуации подбирает ему такую систему заданий, которая будет и по силе, и в тоже время потребует не простого воспроизведения формулы или решения по запомнившемуся образцу, а работы со строго определенной для него долей творческой самостоятельности. В эти задания могут быть включены вопросы, для ответов на которые ученики должны поработать с книгой, написание различных планов ответа на самые разнообразные вопросы, различные творческие и специальные задания. Индивидуальные задания отличаются от основных заданий постепенным переходом от простого к сложному, от простого воспроизведения к творческой работе.
Творчески работающие учителя не ограничиваются в процессе обучения включением только самостоятельных работ. Осуществляя индивидуальный подход к учащимся, изучая и зная их способности и наклонности, они планируют на некоторых уроках проведение творческих самостоятельных работ. Индивидуальная самостоятельная работа используется не только с целью усвоения знаний, умений и навыков, но и рассматривается как средство развития творческих способностей, инициативы учащихся.
Одним из средств выполнения этой задачи является использование в самостоятельной работе заданий, одинаковых по содержанию, но различных по способу выполнения. В отличие от обычных заданий, в которых одинаково содержание и одинаков способ выполнения (задания I вида), использование заданий, одинаковых по содержанию, но различных по способу выполнения (задания II вида), дает возможность каждому ученику проявить свои творческие способности и возможности.
Задание, в котором предлагается решить самостоятельно уравнение: 7-х = 5, 4+х =8, можно отнести к I виду. Если несколько изменить инструкцию, можно преобразовать данное задание в задание II вида. Оно будет выглядеть так: "Составьте различные уравнения с числами 7, 5, 4, х, 8 и решите их". Получив для самостоятельной работы такое задание, каждый ученик творчески подходит к его выполнению. Учащиеся составляют, например, уравнения: 4+х =5, 7-х =5, 7+х =8 и т.д.
Одни ученики смогут записать только одно-два уравнения и решить их, другие запишут большее число вариантов. Деятельность учащихся носит поисковый, творческий характер, так как для выполнения задания необходимо не только умение решить уравнение, но и понимать взаимосвязь между компонентами и результатом действий. Учащиеся должны понимать, что случай 5+х =4 не имеет решения, и уметь объяснить почему, ориентируясь на саму запись уравнения.
Используя те же числа, учитель может предложить и другое задание, которое также будет характеризоваться одинаковым содержанием, но различными способами выполнения, например: "Используя данные числа, составьте уравнения, в которых неизвестное равно нулю" (х+5 =5, 4-х =4 и т.д.).
Цель самостоятельных работ - создание предпосылок для творческой деятельности. Познавательная деятельность обучаемых заключается в глубоком проникновении в сущность рассматриваемых объектов, установлении связей и отношений, необходимых для нахождения новых связей и отношений, неизвестных ранее идей и принципов решений, генерирования новой информации.
Эффективность самостоятельной работы учащихся прямо зависит от условий, обеспечивающих организацию и планирование, управление и контроль за системой самостоятельных работ.
2.2.2. Обучение составлению эвристических алгоритмов, как способ развития творческих способностей младших школьников
В настоящее время нашей стране нужны люди, способные принимать нестандартные решения, умеющие творчески мыслить. Уже давно ученые пытались разгадать загадку творчества и выявили психологические составляющие, необходимые для творческой деятельности. Это:
- гибкость ума, включающая способность к выделению существенных признаков из множества случайных и способность быстро перестраиваться с одной идеи на другую;
- систематичность и последовательность мышления, позволяющая управлять процессами творчества;
- диалектичностъ мышления, при которой мыслящий человек может четко сформулировать противоречие и найти способ его разрешения;
- способность выдвигать гипотезы и уметь их проверять.
Одним из эффективных средств развития творческого мышления являются эвристические задачи. Такие задачи требуют "открыть" (разработать) специфический способ достижения поставленной цели, точно и понятно описать его. Эвристические задачи вовлекают детей в творческую поисковую деятельность, содействуют развитию многих общеинтеллектуальных умений.
Решение эвристических задач требует умения работать с алгоритмами, т.е. планировать последовательность действий для достижения какой-либо цели, а также решать широкий класс задач, для которых ответом является не число или утверждение, а описание последовательности действий.
При творческом подходе к проблеме необходимо выявить новые свойства конкретной ситуации. Особенно важно это при выполнении нестандартных заданий, не имеющих аналогов решения. В таких заданиях сама проблема не всегда четко определена и поэтому нуждается в окончательном формулировании. От решающего требуется умение построить проблемную ситуацию: выделить проблему и критерии оптимального решения.
Задача. Среди трех монет одна фальшивая, она отличается по весу от остальных. Причем неизвестно, легче она или тяжелее. Как с помощью чашечных весов без гирь найти фальшивую монету?
По условию задачи у нас всего три монеты, поэтому положить на чашечку весов можно только по одной монете. Назовем эти монеты "первая" и "вторая" и нарисуем возможные варианты первого взвешивания:
Если весы уравновесились (рис. 1), то первая и вторая монеты одинаковые, т.е. настоящие, значит, фальшивая монета - третья.
Если же весы не уравновесились (рис. 2 и 3), то одна из двух взвешиваемых монет фальшивая, а третья будет точно настоящей, так как фальшивая монета по условию задачи только одна. Чтобы узнать, какая монета из двух фальшивая, надо взвесить одну из "подозреваемых" монет и настоящую. Возможны два варианта выбора монет для взвешивания. Можно взвесить первую монету и третью или вторую и третью. При таких взвешиваниях возможны два результата: весы уравновесятся или нет. Если вес взвешиваемых монет будет равен, значит, фальшивая оставшаяся монета, если нет, то фальшивая - взвешиваемая «подозреваемая» монета.
Ответом этой задачи является разветвляющийся алгоритм. Его можно записать словами, и тогда получится целое сочинение. Такая форма записи очень громоздка и неудобна для анализа. Поэтому в начальных классах можно предложить оформить такой алгоритм в виде блок-схемы. Например:
Для обучения составлению блок-схем решения разветвляющихся эвристических задач целесообразно использовать задания по восстановлению блок-схем. При этом ученики анализируют каждый блок схемы, определяют возможные варианты по заполнению пропущенных блоков, что способствует развитию гибкости ума. Эти задания обладают и развивающим эффектом, поскольку деятельность учеников по заполнению готовой блок-схемы основана на таких интеллектуальных умениях, как умение анализировать, обобщать, сравнивать, делать выводы из данных условий.
Задание. Поставьте в блок-схеме второго способа решения предыдущей задачи знаки >, < или = так, чтобы получилось верное решение.
К задачам на составление эвристических алгоритмов относятся задачи на переливание.
Задача. Как с помощью пятилитрового бидона и трехлитровой банки набрать из родника 4 л воды?
Путем анализа условия задачи выясняем, что нам даны две мерки - 3 л. и 5 л. и неограниченное количество воды в роднике. Требуется, используя данные мерки, налить 4 л воды.
Обозначим: а - родник, b - пятилитровый бидон, с - трехлитровая банка.
Одно действие (ход) будем обозначать а - с. Первая буква показывает, откуда переливаем, вторая - куда наливаем. Емкость, в которую переливаем, заполняется, если это возможно, полностью.
Решение задачи удобно представить в табличной форме:
I способ решения
№
Ход
а
b
с
1
а - b
3
5
0
2
b - с
3
2
3
3
с - а
6
2
0
4
b - с
6
0
2
5
а - b
1
5
2
6
b - с
1
4
3
7
с - а
4
4
0
II способ решения
№
Ход
а
b
С
1
a - с
5
0
3
2
с - b
5
3
0
3
а - с
2
3
3
4
с - b
2
5
1
5
b - а
7
0
1
6
с - b
7
1
0
7
а - с
4
1
3
8
с - b
4
4
0
Как видим, у данной задачи есть два решения. Более рациональным является первое, так как за меньшее число ходов мы отвечаем на вопрос задачи.
При более детальном рассмотрении способов решения задач на переливание можно установить, что все задачи имеют как минимум два способа решения, одно из которых всегда более рационально, но для того, чтобы установить, какое, надо рассмотреть разные варианты решений. Такие задачи формируют вариативность и диалектичность мышления учащихся, что очень важно для развития их творческой деятельности. Для отработки умений по нахождению промежуточных значений переливаний целесообразно предложить учащимся выполнить задание по заполнению таблицы по заданному алгоритму. В этом случае деятельность учащихся направлена на исполнение алгоритмов. Задача. В бочке 12 л. кваса. Как с помощью 5- и 7-литровых банок разделить квас по 6 л?
Обозначим сосуды: а - 12 л, b - 7 л, с-5.
1 способ решения
№
Ход
а
b
С
1
a - b
2
b - c
3
c - a
4
b - c
5
a - b
6
b - c
7
c - a
8
b - c
9
a - b
10
b - c
11
c - a
2 способ решения
№
Ход
а
b
С
1
a - c
2
c - b
3
a - c
4
c - b
5
b - a
6
c - b
7
a - c
8
c - b
9
b - a
10
c - b
11
a - c
Решение задач на переливание способствует формированию понятия "алгоритм", развитию умений составлять и исполнять алгоритмы, а также развитию вычислительных навыков. При заполнении таблицы на каждом шаге ученики должны установить, какое количество жидкости находится в каждом сосуде, сколько пустого места в каждом сосуде, какое количество жидкости можно перелить и т.д. Таким образом, ученики должны решить огромное количество мелких задач, условие которых необходимо предварительно установить.
К задачам на составление эвристических алгоритмов можно отнести задачи на перевозки, решение которых способствует развитию умения выдвигать и проверять гипотезы, так как при нахождении способов переправ дети должны не только предложить различные варианты, но и уметь оценить последствия каждого из них.
Задача. Как трем супружеским парам переправиться через реку двухместной лодке, если правила того времени не позволяли замужней женщине находиться в обществе мужчин без своего мужа?
При поиске решения этой задачи в начальных классах можно использовать прием инсценировки задачи: выбрать три "супружеские пары" и попытаться их "переправить через реку". Такой подход позволит наглядно увидеть трудности, которые могут возникнуть в процессе перевозки, и найти способы их разрешения. Алгоритм решения этой задачи целесообразно оформить в виде схемы.
Обозначим супружеские пары Ж1 и М1, Ж2 и М2, ЖЗ и МЗ. Одну переправу будем обозначать следующим образом:
1) стрелка показывает направление движения;
2) буквы у стрелки показывают, кто переправляется;
3) слева записываются все, кто в данный момент оказался на левом берегу;
4) справа записываются те, кто в данный момент уже переправился.
В этой задаче сначала могут переправиться либо супружеская пара, либо две женщины. Поиск решения такой задачи основан на рассмотрении все возможных вариантов переправ на каждом шаге задачи и умении определить лучший из них.
Решение:
1. М2Ж2М3Ж3 >Ж1М1
2. М2Ж2М3Ж3 <М1 Ж1
3. М1М2М3 >Ж2Ж3 Ж1
4. М1М2М3 <Ж1 Ж2Ж3
5. М1Ж1 >М2М3 Ж2Ж3
6. М1Ж1 <М2Ж2 М3Ж3
7. Ж1Ж2 >М1М2 М3Ж3
8. Ж1Ж2 <Ж3 М1М2М3
9. Ж3 >Ж1Ж2 М1М2М3
10. Ж3 <Ж2 М1М2М3Ж1
11. >Ж2Ж3 М1М2М3Ж1
При оформлении задач с использованием такой формы записи дети могут допустить ошибку: записать тех, кто переправляется, с той стороны, куда они плывут. В этом случае численность всех участников увеличивается. Чтобы избежать такой ошибки, следует обратить внимание детей на тот факт, что люди не могут находиться одновременно и в лодке, и на берегу. Чтобы дети не забывали записывать людей, находящихся на берегу, следует пересчитывать всех персонажей задачи. Число всех участников переправы в каждой строке должно равняться числу всех персонажей.
Важно подчеркнуть, что в работе над развитием творческого мышления очень велика роль взрослого. Дети сами не в состоянии полностью организовать свою деятельность, оценить полученные результаты. Поэтому взрослый должен разъяснить смысл каждого задания, стимулировать нестандартные и интересные решения, помочь ребенку оценить правильность предложенных решений. Также необходимо, чтобы взрослый был доброжелателен, и терпим к ответам ребенка, умел принимать и спокойно обсуждать даже такие варианты решений, которые на первый взгляд кажутся неполными, абсурдными или невероятными.
2.2.3. Нестандартные задания по математике, как средство развития творческой личности учащихся начальной школы
Модернизация образовательной отрасли "Математика" в контексте задач единого образовательного простора Украины на современном этапе ориентирована, в первую очередь, на обеспечение развития познавательных способностей школьников, алгоритмической культуры, умений устанавливать причинно-следственные связи между фактами, обосновывать суждения, переводить на математический язык реальные ситуации.
В государственных документах об образовании: Государственной национальной доктрине; Государственной национальной программе "Освіта" ("Україна XXI століття"), Государственном стандарте начального образования решению текстовых задач, в том числе и нестандартных, в курсе математики придается большое значение.
Многочисленные наблюдения педагогов, опыт психологов убеждают, что умственные способности младших школьников шире и богаче, чем считалось ранее. Действующие программы для начальных классов являются первым шагом в деле использования подлинных познавательных способностей, развития мышления младших школьников. Опыт использования ряда нестандартных задач показывает, что для формирования самостоятельности мышления, воспитания творческой активности можно рекомендовать для включения их в систему упражнений и задач, предлагаемых учащимся, как на уроке, так и во внеклассной работе. Однако отсутствие подобных задач в школьных учебниках и недостаточное количество их в дополнительной литературе не позволяет учителю решить эту проблему.
Отметим, что проблема формирования у младших школьников умения выполнять вычислительные приемы в пределах 100являеться проблемой.
Возможности усовершенствования системы математических выражений в пределах 100, методов работы с ними значительно расширились благодаря результатам исследований таких ученых: Г.О.Балл, Г.П.Бевз, В.А.Крутецкий, Г.С.Костюк, В.М.Монахов, О.Я.Савченко, Л.В.Скрипченко, Л.М.Фридман и др.
В условиях обновления содержания школьного образования эта проблема остается актуальной, поскольку обсуждается место и значение вычислительных выражений в пределах 100.
Про изменение направления методики математики в сторону развития индивидуальных способностей говорят везде, но решительных изменений в большинстве школ в этом направлении не произошло. Многие учителя просто не знают с чего начать. Однако один из путей довольно известный - это использование системы нестандартных заданий.
Рассматривая различные виды нестандартных заданий, наибольшее влияние на развитие математических способностей школьников имеют задания:
- логического содержания;
- комбинаторные задания;
- с элементами исследования;
- на сообразительность.
Найди значение каждого выражения, если а=7
А + 48 65-а 100-(13-а)
7-а а+25 (а-3)+84
Найди качество, по которому был составлен ряд чисел, и напиши следующее число: а) 1; 2; 4; 8; ...; б) 1; 14; 27; 40;
Из каждого примера на вычитание составь пример на сложение
Образец: 28-5=23 23+5=28
63-8= 80-7= 25-9= 85-21= 64-21= 65-8= 39-9=
Выпиши примеры с ответами: 30, 47, 60, 88.
15+14 33+33 55+5 77+7 90-8
50-3 27+3 66+6 14-7 90-2
Объясни, как выполнили вычисления.
38+2=30+(8+2)=30+10=40
80-4=70+(10-4)=70+6=76
Объясни каждый способ вычисления.
36+7=(36+4)+3=40+3=43
36+7=30+(6+7)=30+13=43
73-8=(73-3)-5=70-5=65
73-8=60+(13-8)=60+5=65
Но решить такие задания, не имея специальной подготовки, могут очень не многие учащиеся. Поэтому есть смысл предварительно показать ученикам специальные приемы их разбора и поиска решения.
Привлекая младших школьников к решению нестандартных заданий, мы тем самым усиливаем обучение, развиваем творческое мышление, прививаем стойкий интерес к предмету, что является условием успешного обучения в средних и старших классах. Но следует помнить, что такая работа будет эффективна только при условии доброжелательного отношения к каждому ученику, привлечения его к высказыванию своих предположений и не боязни задавать вопросы. Такого рода задания может составить любой учитель. При их решении учащиеся используют различные подходы для их выполнения. Это способствует творческому развитию ребенка и повышаеться интерес к уроку математики.
2.2.4. Прием поиска логических основ условий текстовых математических задач в составе творческой деятельности учащихся
Решение текстовых задач открывает большие возможности для включения учащихся в активную познавательную деятельность - поиск. Одним из приемов формирования творческой активности, развития мышления учащихся служит поиск логических основ условий текстовых составных задач.
Логическая основа условия (ЛОУ) - это понятия и отношения между ними, которые заданы в условии задачи. По-другому, ЛОУ - "ядро" условия, очищенное от сюжетных деталей и используемое в содержании вычислительного процесса для получения ответа к задаче (А. К. Артемов). Выявление различных ЛОУ задачи служит основой для решения ее разными способами.
Существуют две формы отражения ЛОУ задачи: открытая и скрытая. При открытой форме задания ЛОУ используемые в задаче понятия и отношения между ними явно, четко выражены в словесной формулировке. Большинство составных задач наряду с открытой ЛОУ содержит еще и скрытые (одну или несколько). Для скрытой ЛОУ характерно то, что отношения, взаимосвязи данных условия задачи не "лежат на поверхности", они "скрыты в глубине", замаскированы сюжетными деталями. Именно работа по выявлению скрытых ЛОУ задачи наиболее способствует активизации мыслительного процесса, вовлекает учащихся в творческую деятельность. Дети учатся рассматривать уже знакомый объект (текст задачи) с разных сторон, вычленяя новые его свойства и взаимосвязи (отношения между данными задачи) для получения результата (решения задачи) другим, новым для них способом. При этом у учащихся проявляются важнейшие общеинтеллектуальные умения: сравнение, анализ, синтез, аналогия, формируются качества творческого мышления: наблюдательность, гибкость, абстрактность, вариативность.
Изложенное выше подчеркивает целесообразность обучения учащихся вскрытию различных взаимосвязей между понятиями задачи. Отметим методические приемы, которые могут быть использованы учителем при организации работы учащихся по поиску различных ЛОУ задачи.
1. Прием постановки системы вопросов предполагает последовательность взаимосвязанных, целенаправленно задаваемых учителем вопросов, способствующих включению учащихся в активную познавательную деятельность. Целесообразно начинать анализ текста задачи с общих вопросов (О чем говорится в задаче? Что об этом известно?) и заканчивать конкретными (Что именно об этом говорится? О каком количестве идет речь? Что еще известно? и т.п.).
Для выявления скрытых ЛОУ следует изменить направленность вопросов: Нельзя ли решить задачу иначе? Что из условия можно использовать, чтобы решить задачу по-другому? Какие данные необходимо рассмотреть? Какая между ними связь? Что это даст?
Постановка вопросов часто применяется в совокупности с другими приемами выявления ЛОУ задач, являясь их неотъемлемой частью.
2. Прием моделирования базируется на умении строить различные модели краткой записи текста задачи. Удачно выбранный способ краткой записи содержит все данные задачи и наглядно отражает связи между ними.
Вскрытию замаскированных ЛОУ задачи наиболее содействует применение графических видов моделей: схем, чертежей, таблиц.
Задача. С одного поля собрали 370 т зерна, а с другого - в два раза больше. Сколько тонн зерна собрали с этих двух полей?
Используя в качестве краткой записи словесную модель, получим:
1. - 370 т
?
2. - ?, в 2 раза больше, чем с 1-го
Такая модель записи данной задачи отражает отношение между количествами зерна, собранными с первого и со второго поля. Эта ЛОУ наталкивает на следующее решение:
1) 370 х 2 = 740 (т) - собрали со второго поля;
2) 370 + 740 = 1110 (т) - собрали с двух полей.
Теперь для краткой записи задачи воспользуемся графической моделью:
Данная модель подсказывает вопрос: сколько раз по 370 содержится во всем количестве собранного зерна? Схема показывает, что 3 раза (1 + 2 = = 3). Тогда общее количество тонн зерна равно 370 х 3 = 1110 (т).
Таким образом графическая модель помогла увидеть другую ЛОУ (в общем количестве тонн зерна содержатся три равные части, по 370 т в каждой) и найти другой способ решения задачи.
3. Прием группировки данных задачи основан на анализе данных задачи. Он позволяет выявить возможные связи между данными, а затем выбрать те из них, что нужны для решения.
Суть приема - в умении составить выражения из чисел, данных в условии задачи, и разъяснить их смысл (О.О.Еремеева).
Этот прием можно представить в виде памятки:
1. Подумай, что обозначает в задаче каждое число.
2. Найди в задаче пары чисел, связанных между собой по смыслу; подумай, что можно узнать по этим данным, и составь выражения.
3. Из чисел задачи и полученных выражений попробуй составить другие выражения и объясни их смысл.
4. Отбери те выражения, которые нужны для решения задачи.
Задача. Доярки молочной фермы взяли обязательство за пастбищный сезон, продолжающийся 5 месяцев, получить от каждой коровы 3000 кг молока. Выполнят ли они свое обязательство, если будут надаивать от каждой коровы по 20 кг молока в день? (В месяце считать 30 дней.)
Для выявления взаимосвязей между данными задачи воспользуемся памяткой:
1) 5 месяцев и 3000 кг связаны, так как по этим данным можно узнать, сколько доярки получат от каждой коровы за 1 месяц: 3000 : 5;
2) выражение 3000 : 5 и 20 кг связаны, так как по этим данным можно узнать, за сколько дней доярки получат необходимое количество молока:
(3000 : 5): 20;
3) (3000 : 5) и 30 дней связаны, так как по этим данным можно узнать, сколько килограммов молока от каждой коровы доярки надаивают за день:
(3000 : 5): 30;
4) 20 кг и 30 дней связаны, так как по этим данным можно узнать, сколько всего молока доярки получат за 1 месяц: 20 х 30;
5) (20 х 30) и 3000 кг связаны, так как по этим данным можно узнать, сколь ко месяцев продолжается пастбищный сезон: 3000 : (20 х 30);
6) (20 х 30) и 5 месяцев связаны, так как по этим данным можно узнать, сколько молока доярки получат от каждой коровы за пастбищный сезон.
Из шести перечисленных взаимосвязей между данными задачи (возможные связи и способы решения перечислены не все) нетрудно выделить 4 способа решения этой задачи:
1-й способ. (3000 : 5) : 20 = 30 (дней), 30 = 30 (по условию), значит, доярки выполнят свое обязательство. В основе решения - отношения между количеством молока, получаемым от коровы за месяц, и количеством молока, получаемым от коровы за день.
2-й способ. (3000 : 5) : 30 = 20 (кг), 20 = 20 (по условию), значит, доярки выполнят свое обязательство. ЛОУ здесь - соотношение количества молока, получаемого от коровы за месяц, с количеством дней в месяце.
3-й способ. 3000 : (20 х 30) = 5 (месяцев), 5 = 5, доярки выполнят свое обязательство. Смысловым ядром решения здесь выступает соотношение планируемого количества молока от каждой коровы за пастбищный сезон с количеством молока, получаемым от каждой коровы за месяц.
4-й способ. (20 х 30) х 5 = 3000 (кг), 3000 = 3000, доярки свое обязательство выполнят. ЛОУ, повлекшая такой способ решения, - отношения между количеством молока, получаемым от коровы за месяц, и количеством месяцев пастбищного сезона.
В результате установления различных связей между одними и теми же данными задачи можно вскрыть ее различные ЛОУ и получить разные способы ее решения.
4. Прием введения дополнительных соглашений. Суть данного приема состоит во введении в условие задачи дополнительных отношений между данными, которые не влияют на результат решения, но подсказывают новые ходы (направления) мыслей решающих. Прием введения дополнительных отношений (соглашений) основан на представлении ситуации, описанной в задаче. Представить ситуацию, изложенную в задаче, можно мысленно, а можно с помощью моделей.
Задача. Девочка нашла 36 грибов, а мальчик - 28. Среди этих грибов оказалось 3 несъедобных. Сколько съедобных грибов нашли дети?
Предположим, что все несъедобные грибы нашла девочка. Тогда за основу решения можно взять отношения между всеми грибами, собранными девочкой, и всеми несъедобными грибами:
2) 33 + 28 = 61 (г) - столько съедобных грибов нашли дети.
Введение в условие задачи положения о том, что все несъедобные грибы нашел мальчик, выявляет новую ЛОУ - связь между грибами, найденными мальчиком, и несъедобными грибами и, соответственно, дает новый способ решения:
2) 25 + 36 = 61 (г) - столько нашли съедобных грибов всего.
Предположив, что несъедобные грибы нашли и девочка, и мальчик, можно найти еще два способа решения задачи:
1) 36 - 1 = 35 (г) - столько съедобных грибов у девочки;
2) 28 - 2 = 26 (г) - столько съедобных грибов у мальчика;
3) 35 + 26 = 61 (г) - общее число съедобных грибов.
Это решение основано на следующем положении: "Среди всех грибов, собранных девочкой, 1 гриб оказался несъедобным, а среди грибов, найденных мальчиком, оказалось 2 несъедобных".
Решение:
1) 36 - 2 = 34 (г);
2) 28 - 1 = 27 (г);
3) 34 + 27 = 61 (г)
основано на таком соглашении: "Девочка нашла 2 несъедобных гриба, а мальчик - 1".
Наиболее распространенный среди учащихся способ решения данной задачи основан на взаимосвязи общего количества собранных детьми грибов и количества несъедобных грибов:
1) 36 + 28 = 64 (г) - нашли дети всего;
2) 64 - 3 = 61 (г) - столько грибов оказалось съедобными.
Этот прием способствует развитию воображения учащихся, формирует у них умение работать с моделями, умение рассуждать.
5. Прием продолжения начатого решения используется следующим образом: детям после ознакомления с задачей дается запись начатого решения этой задачи и предлагается выяснить, что находится первым действием, вторым и т.д., и какие отношения, взаимосвязи между данными задачи легли в основу данных арифметических действий. Таким образом, по составленному равенству или выражению учащиеся выявляют ЛОУ задачи и продолжают начатое решение в соответствии с ней.