бесплатные рефераты

Методика оптимизации библиотечной системы обслуживания

1

Освобождение  Методика оптимизации библиотечной системы обслуживания -го канала

0

1

n+1

2

Уход из очереди 1-й заявки

0

1

n+m

2

Уход из очереди m-й заявки

0

1

 

В соответствии с логикой работы имитационной модели её алгоритм состоит из трех модулей: модуля 0, реализующего действия, инициируемые поступлением в систему очередной заявки (событие типа 0), модуля 1, реализующего действия, которые необходимо осуществить в связи с освобождением канала (событие типа 1), модуля 2, реализующего действия, которые необходимо осуществить в связи с уходом из очереди m-й заявки (событие типа 2).

Очередность работы модулей определяется координирующим элементом модели, которым является календарь событий. Совокупность операторов, обеспечивающих ввод необходимых для работы модели исходных данных, просмотр календаря и инициирующих действия модулей 0, 1, 2 образует внешний контур модели.

Структурная схема внешнего контура модели представлена на рис. 2.1.

 

 Методика оптимизации библиотечной системы обслуживания

 

 

Рис. 2.1 - Блок-схема внешнего контура модели

Работа внешнего контура начинается с ввода исходных данных и настройки.

Исходные данные:

n – число каналов системы;

M – емкость буфера;

N0 – заданное заранее число заявок, которые должны поступить в систему за время её работы;

Е0 = {1, 2,…, n} – массив номеров свободных каналов системы;

Е1 = {0,0,…,0} – массив номеров занятых обслуживанием каналов системы.

 

2.5 Описание алгоритма функционирования

Перед началом работы модели все каналы системы свободны, поэтому массив Е0   содержит номера всех каналов, а массив Е1 – пуст.

Начальный оператор модели сравнивает число заявок N, прошедших через систему, с предельным значением N0. Если N=N0, то выполняется статистическая обработка результатов моделирования и печать. Если же N<N0, то осуществляется просмотр календаря. При этом просматриваются в порядке возрастания номеров строки календаря, отмеченные признаком c=0, и выбирается та, для которой время выполнения соответствующего события является минимальным. Назначение и смысл признаков cj будут разъяснены позднее. Фиксируется номер найденного события (номер строки). Если он равен 0, то далее работает модуль 0, в противном случае проверяется тип события. Если тип является 1, то выполняется модуль 1, иначе модуль 2.

Перейдем к рассмотрению операций, реализуемых в модуле 0. Блок-схема модуля 0 приведена на рис. 2.2.

 Методика оптимизации библиотечной системы обслуживания

Рис. 2.2 - Блок-схема модуля 0

Оператор 1 увеличивает содержимое счетчика заявок, прошедших через систему, на единицу.

Оператор 2 проверяет, есть ли хотя бы один свободный канал. В этом случае переходим к оператору 3, в противном случае (если свободных каналов нет) – к оператору 11.

Оператор 3 обеспечивает просмотр тех строк календаря, номера которых соответствуют свободным каналам, и выбирает канал, освободившийся ранее других. Пусть номер этого канала равен k0. Именно этот канал будет обслуживать поступившую заявку. Переход к оператору 4.

Оператор 4 реализует формирование случайной продолжительности обслуживания заявки в соответствии с заданной плотностью распределения j(t).

Оператор 5. Сформированная оператором 4 случайная величина h используется для расчета момента времени освобождения канала k0. Этот момент времени вычисляется по формуле

:= t0 + h,

t0 – момент поступления заявки (содержится в строке 0).

Полученное значение  Методика оптимизации библиотечной системы обслуживания  запоминается в строке k0. Переход к оператору 6.

Оператор 6 присваивает признаку  Методика оптимизации библиотечной системы обслуживания , соответствующему номеру занятого канала, значение 0, символизирующее занятость канала. Переход к оператору 7.

Оператор 7 исключает из массива Е0 номеров свободных каналов номер k0 занятого канала. Переход к оператору 8.

Оператор 8 добавляет номер k0 занятого канала к массиву Е1. Переход к оператору 9.

Оператор 9 формирует случайную величину продолжительности интервала между заявками в соответствии с плотностью распределения y(t). Переход к оператору 10.

Оператор 10. Сформированная датчиком случайных чисел с плотностью распределения y(t) случайная величина x добавляется к значению t0 и, таким образом, определяется момент поступления следующей заявки: t0:= t0+x. Возврат к блоку 2 внешнего контура, контролирующему общее число заявок, прошедших через систему.

Оператор 11 выполняет действия в случае, когда в момент поступления заявок все каналы системы заняты. При этом проверяется, заполнен ли буфер. Если не заполнен (число т содержащихся в буфере заявок меньше емкости буфера М), то переход к оператору 12, в противном случае – к оператору 13.

Оператор 12 увеличивает число заявок в буфере на единицу.

Оператор 13 реализует формирование случайной продолжительности ожидания заявки в соответствии с заданной плотностью распределения N(t).

Оператор 5. Сформированная оператором 12 случайная величина H используется для расчета момента времени освобождения места в очереди. Этот момент времени вычисляется по формуле

                                                           tn+m:= t0 +H,                                             (2.7)

t0 – момент поступления заявки (содержится в строке 0).

Полученное значение tn+m запоминается в строке n+m. Переход к оператору 9.

Оператор 15 увеличивает число заявок, получивших отказ (все каналы и буфер заняты), на единицу. Переход к оператору 9.

Рассмотрим теперь операции, реализуемые в модуле 1. Блок-схема модуля 1 приведена на рис. 2.4.

 

 Методика оптимизации библиотечной системы обслуживания

Рис. 2.3 - Блок-схема модуля 1

Модуль 1 начинает работать в случае, когда самое ранее из событий, отображаемых календарем, соответствует освобождению канала с номером r0.

Оператор 1 проверяет, есть ли хотя бы одна заявка, ждущая обслуживания в буфере. Если буфер не пуст (m¹0), то переход к оператору 2, в противном случае – к оператору 5.

Оператор 2 обеспечивает формирование случайной продолжительности h занятости канала r0 при обслуживании заявки, хранившейся в буфере. Переход к оператору 3.

Оператор 3 определяет момент окончания обслуживания каналом r0 заявки, взятой из буфера. Момент освобождения канала рассчитывается по формуле

                                                       Методика оптимизации библиотечной системы обслуживания :=  + h.                                       (2.8)

Переход к оператору 4.

Оператор 4 уменьшает число заявок, хранящихся в буфере и ожидающих освобождения какого-либо канала, на единицу. Возврат к оператору 2 внешнего контура.

Оператор 5 сдвигает массив заявок, ожидающих в очереди, на 1 позицию вверх.

Оператор 6 присваивает признаку  Методика оптимизации библиотечной системы обслуживания -го значение 1. В результате этой операции строка r0, соответствующая освободившемуся, но не занятому каналу (буфер пуст), при очередном просмотре календаря не будет выделена (просматриваются только те строки, для которых cj=0). Если описанную операцию присваивания  Методика оптимизации библиотечной системы обслуживания :=1 не выполнить, то при просмотре календаря та же строка r0 будет выбрана вновь (этой строке соответствует минимальное время наступления события) и процедура реализации модели зациклится. Переход к оператору 6.

Оператор 6 добавляет номер r0 к массиву свободных каналов. Переход к оператору 7.

Оператор 7 исключает номер r0 из массива занятых каналов.

Рассмотрим теперь операции, реализуемые в модуле 2. Блок-схема модуля 2 приведена на рис. 2.4.

 

 Методика оптимизации библиотечной системы обслуживания

Рис. 2.4 - Блок-схема модуля 2.

Оператор 1 очищает ячейку с номером n+r0 .

Оператор 2 сдвигает массив заявок, ожидающих в очереди, на 1 позицию вверх, начиная с номера n+r0+1

Оператор 3 уменьшает количество ожидающих заявок на 1.

Завершающим этапом работы имитационной модели является статистическая обработка результатов моделирования. После завершения работы модели в памяти остаются значения общего числа заявок N0, прошедших через систему, и числа заявок, получивших отказ – s.

 

2.6 Оптимизация параметров системы обслуживания

Данные, полученные в результате работы ИМ, могут быть использованы для подсчета критерия эффективности L функционирования СМО:

                                                                L = Пр – Затр,                                    (2.9)

где

Пр – средняя прибыль в единицу времени, получаемая в ходе работы СМО,

Затр – средние затраты в единицу времени, связанные с функционированием СМО.

При этом

                                              Пр = C0 (Tобс) (N0 – s),                                         (2.10)

                                            Затр = C1 s + Cэ (Tобс) n.                                      (2.11)

Тогда

                                      L = C0 (Tобс)(N0 – s) – C1 s - Cэ (Tобс) n.                      (2.12)

Полученное соотношение позволяет использовать имитационную модель для оптимизации СМО.

Проведем оптимизацию СМО с помощью метода Нелдера-Мида.

Выберем в области возможных значений факторов некоторый начальный набор Относительно этой точки построим многогранник (симплекс) содержащий  Методика оптимизации библиотечной системы обслуживания вершин, координаты которых определяются матрицей  Методика оптимизации библиотечной системы обслуживания .

          

где

                        

   - длина ребра симплекса, выбираемая, например равной 1.

В каждой из этих точек проведем серию имитационных экспериментов и, усреднив результаты в каждой, получим оценки средних значений функции отклика  Методика оптимизации библиотечной системы обслуживания . Теперь, используя стандартную процедуру Нелдера-Мида, отыскивают «худшую» точку (если решается задача максимизации, то это точка, в которой значение функции отклика минимально).

Затем реализуется один из возможных вариантов деформирования многогранника (отражение, растяжение, сокращение или редукция), после чего в новой (или новых) точке выполняется имитационное моделирование и процедура продолжается.

 

Рассчитаем оптимальные параметры библиотечной системы обслуживания – число каналов обслуживания  Методика оптимизации библиотечной системы обслуживания  и среднее время обслуживания  Методика оптимизации библиотечной системы обслуживания .

Вершины начального симплекса:

 Методика оптимизации библиотечной системы обслуживания

Параметры имитационной модели:

 Методика оптимизации библиотечной системы обслуживания

 Методика оптимизации библиотечной системы обслуживания

 Методика оптимизации библиотечной системы обслуживания

 Методика оптимизации библиотечной системы обслуживания

 Методика оптимизации библиотечной системы обслуживания

Оптимизируемой функцией является (2.12)

Критерий останова:

Результат:  Методика оптимизации библиотечной системы обслуживания

Значение критерия  Методика оптимизации библиотечной системы обслуживания

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Гражданская оборона

Защита населения от оружия массового поражения и при чрезвычайных ситуациях (ЧС) достигается максимальным осуществлением всех защитных мероприятий гражданской обороны, наилучшим использованием всех способов и средств защиты. Основными способами защиты населения при ЧС являются: укрытие населения в защитных сооружениях; рассредоточение в загородной зоне рабочих и служащих предприятий, учреждений и организаций, продолжающих свою деятельность в городах, а также эвакуация из этих городов всего остального населения; использование населением средств индивидуальной защиты (СИЗ). В данной дипломной работе рассмотрен вопрос об использовании СИЗ  в электронной промышленности.

СИЗ предохраняют от попадания внутрь организма и на кожные покровы радиоактивных, отравляющих и бактериальных средств. Они подразделяются по защищаемым участкам на:

·        Средства индивидуальной защиты органов дыхания;

·        Средства индивидуальной защиты глаз;

·        Средства индивидуальной защиты кожи.

СИЗ органов дыхания и кожи в системе защитных мероприятий в зонах ЧС должны предотвращать сверхнормативные воздействия на людей опасных и вредных аэрозолей, газов, паров, попавших в окружающую среду при разрушении оборудования и коммуникаций соответствующих объектов, а также снижать нежелательные эффекты действия на человека светового, теплового и ионизирующего излучений.

Выпускаемые промышленностью СИЗ должны быть направлены преимущественно для обеспечения личного состава формирований, подготавливаемых для проведения спасательных и других неотложных работ в очагах поражения. При аварийной ситуации или угрозе нападения противника работающие получают СИЗ на своих объектах, население - в ЖЭКах [10].

В качестве СИЗ органов дыхания следует использовать общевойсковые, гражданские и промышленные противогазы, выпускаемые промышленностью респираторы (в том числе выпускаемые для производственных целей), простейшие и подручные средства.

По принципу действия средства индивидуальной защиты органов дыхания (СИЗОД) делятся на две группы:

·                    фильтрующие, обеспечивающие защиту в условиях достаточного содержания свободного кислорода в воздухе (не менее 18%) и ограниченного содержания вредных веществ;

·                    изолирующие, обеспечивающие защиту в условиях недостаточного содержания кислорода и неограниченного содержания вредных веществ.

К СИЗ относят: противогазы фильтрующие и изолирующие, респираторы и простейшие средства – противопыльная тканевая маска и ватно-марлевая повязка (ВМП). Простейшие средства изготавливаются, как правило, самим населением.

Фильтрующие противогазы предназначены для защиты органов дыхания, лица и глаз человека от парогазообразных веществ и аэрозолей. Наиболее распространенными являются противогазы ГП-5 и ГП-7. Принцип действия основыван на абсорбции, хемосорбции и катализе, а поглощение дымов и  туманов (аэрозлей) осуществляется путем фильтрации. С целью расширения возможностей противогазов по защите от сильно действующих ядовитых веществ для них введены дополнительные патроны (ДПГ-1; ДПГ-3).

Фильтрующие противогазы могут комплектоваться коробками одного из трех типов:

·        поглощающими (обеспечивают защиту от газов и паров);

·        фильтрующими (обеспечивают защиту от аэрозолей);

·        фильтрующе-поглощающими (обеспечивают защиту от газов, паров и аэрозолей.

Выпускаются фильтрующе-поглощающие и поглощающие коробки различных марок. Коробки каждой из марок предназначены для защиты от конкретных строго определенных вредных веществ в виде паров (газов).

Перечень выпускаемых марок поглощающих и фильтрующе-поглощающих коробок приведен в табл. 3.1.

Табл. 3.1 - Марки поглощающих и фильтрующе-поглощающих коробок

Марка коробки

Назначение

А

для защиты от паров органических соединений (бензин, керосин, ацетон, бензол, толуол, ксилол, сероуглерод, спирты, эфиры, анилин, галоидорганические соединения, нитросоединения бензола и его гомологи, тетроэтилсвинец, фосфор- и хлорорганические ядохимикаты);

В

для защиты от кислых газов и паров (сернистый ангидрид, хлор, сероводород, синильная кислота, хлористый водород, фосген, фосфор- и хлорорганические ядохимикаты);

Г

для защиты от ртути и ртутьорганических соединений;

Е

для защиты от мышьяковистого и фосфористого водорода;

ВР

для защиты от кислых газов и паров, радионуклидов, в том числе радиоактивного йода и его соединений;

И

для защиты от радионуклидов, в том числе от органических соединений радиоактивного йода;

К

для защиты от аммиака;

КД

для защиты от аммиака и сероводорода;

МКФ БКФ

для защиты от кислых газов и паров, паров органических соединений мышьяковистого и фосфористого водорода (но с меньшим временем защитного действия, чем коробки марок А и Б);

Н

для защиты от оксидов азота:

СО

для защиты от оксида углерода;

М

для защиты от оксида углерода в присутствии паров органических веществ, кислых газов, аммиака, мышьяковистого и фосфористого водорода;

Б

для защиты от бороводородов (диборан, пентаборан, этилпентаборан, диэтилдекарборан, декарборан) и их аэрозолей;

ФОС

для защиты от паро-газообразных фторпроизводных непредельных углеводородов, фреонов и их смесей, фтор- и хлормономеров;

ГФ

для защиты от газообразного гексафторида урана, фтора, фтористого водорода, радиоактивных аэрозолей;

Страницы: 1, 2, 3, 4, 5, 6, 7


© 2010 РЕФЕРАТЫ