бесплатные рефераты

Автоматизация производственных систем

Основные понятия автоматизации производственных систем, области ее применения

Комплексы средств автоматизированных систем (АС), к которым относятся АСУП, САПР-К, АСТПП, АСУК, АСУПр, представляют собой совокупность различных видов обеспечения, необходимых для их функционирования.

Математическое обеспечение (МО) - это совокупность математических методов, математических моделей и алгоритмов, необходимых для функционирования АС.

Техническое обеспечение (ТО) - это совокупность взаимосвязанных и взаимодействующих технических средств, обеспечивающих функционирование АС.

Программное обеспечение (ПО) - это совокупность машинных программ, необходимых для функционирования АС.

Информационное обеспечение (ИО) - совокупность сведений, необходимых для функционирования АС. Основной частью ИО являются автоматизированные банки данных и знаний. В ИО входят нормативно-справочные данные, системы классификации и кодирования, типовые проектные решения и т.п. Банк данных состоит из баз данных (БД) и системы управления базами данных (СУБД). Базы данных и СУБД делятся на графические и неграфические. Банк знаний помимо баз данных и СУБД, включает базы знаний (БЗ) и систему управления, осуществляющую функции логического вывода.

Лингвистическое обеспечение (ЛО) - совокупность языков, предназначенных для решения прикладных задач.

Методическое обеспечение (МтО) - совокупность документов, устанавливающих состав и правила эксплуатации средств обеспечения АС. Методическое обеспечение может включать в качестве компонентов МО и ЛО.

Организационное обеспечение (ОО) - совокупность документов, устанавливающих организационную структуру, подразделений, эксплуатирующих АС, связи между подразделениями и их функции. Компонентами ОО являются методические и руководящие материалы, положения, инструкции, приказы и другие документы, обеспечивающие взаимодействие структурных подразделений.

Выше были рассмотрены назначение, цели и основные компоненты АС, обеспечивающих переработку информации. Рассмотрим основные понятия и компоненты систем материального производства.

Материальное производство складывается из технологических процессов, каждый из которых представляет собой часть производственного процесса, содержащую целенаправленные действия по изменению и (или) определению состояния предмета труда. К предметам труда относятся заготовки и изделия. Заготовка - это предмет труда, из которого изменением формы, размеров, свойств поверхности и (или) материала изготавливают деталь.

Технологические процессы делятся на следующие основные классы:

1. Формообразования

2. Размерной обработки

3. Термической обработки и покрытий

4. Сборки и сварки

5. Контроля и испытаний

6. Общего назначения

Формообразование - это изготовление заготовки или изделия из жидких, порошковых или волокнистых материалов. Изготовление заготовки или изделия из жидкого материала заполнением им полости заданных форм и размеров с последующим затвердеванием осуществляется процессами литья; из порошковых материалов - спеканием; из волокнистых - намоткой и выкладкой. Изготовление заготовок из материала в пластичном состоянии производится процессами обработки давлением, заключающимися в пластическом деформировании или разделении материала методами ковки и горячей штамповки, а из листового материала в твердом состоянии - холодной штамповки.

Размерная обработка производится, в основном, процессами резания и электрофизической обработки. Обработка резанием заключается в образовании новых поверхностей отделением поверхностных слоев материала с образованием стружки. В зависимости от способа формирования скорости резания различают два основных типа процессов резания: токарный и сверлильно-фрезерный. В случае токарной обработки скорость резания образуется вращением детали, а при сверлильно-фрезерной обработке - вращением инструмента: сверл, зенкеров, разверток, расточных блоков и метчиков для обработки гладких и резьбовых отверстий и фрез - для обработки поверхностей, не принадлежащих к числу поверхностей вращения.

К электрофизической относятся электроэрозионная, плазменная, лазерная и другие виды обработки.

Термическая обработка заключается в изменении структуры и свойств материала заготовки вследствие тепловых воздействий. Нанесение покрытий - это образование на заготовке поверхностного слоя из инородного материала.

Сборка - это образование соединений составных частей изделия, а сварка - образование неразъемных соединений.

К процессам общего назначения относятся операции транспортирования, маркирования, упаковывания и т.п.

Производственный процесс реализуется с помощью средств технологического оснащения (СТО) - совокупности орудий производства, необходимых для осуществления технологического процесса. К числу СТО относится технологическое оборудование, в котором для выполнения определенной части технологического процесса размещаются материалы или заготовки, средства воздействия на них, а также технологическая оснастка. Технологическое оборудование - это склады, литейные машины, прессы, станки, роботы, печи, испытательные стенды т.п. Технологическая оснастка - это СТО, дополняющее технологическое оборудование для выполнения определенной части технологического процесса: режущий инструмент, штампы, приспособления и т.п.

Эффективность решений, принимаемых по автоматизации зависит от типа производства.

Различают три типа производства: массовое, серийное, единичное. Критерий определения типа производства - коэффициент закрепления операций (КЗО). КЗО - это отношение количества операций, выполняемых в течение месяца, к числу рабочих мест (количество переналадок).

Единичное производство - при КЗО больше 40; мелкосерийное- 40-20 (около 80%); серийное 20-10 (повторяющиеся партии деталей); крупносерийное 10-2; массовое -1 (здесь нет переналадок ,номенклатура постоянная, составляет около 15% )

В случае массового переналаживаемого производства заранее планируются остановки на переналадку для перехода на новое изделие.

Основу технологического оборудования современного компьютеризированного производства составляют гибкие производственные системы.

Гибкая производственная система (ГПС) - это совокупность оборудования с ЧПУ (гибких производственных модулей, станков, транспорта, склада и т.д.) с управлением от ЭВМ, обладающая свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах значений их характеристик.

Гибкий производственный модуль (ГПМ) - многоцелевой станок, способный выполнять комплексную обработку деталей, с накопителем заготовок, магазином инструмента и автоматическим осуществлением всех функций. По принципу автоматизации загрузки и снятия заготовок ГПМ делят на две группы: со сменными приспособлениями- паллетами и с применением промышленных роботов. Первый тип ГПМ предназначен в основном для обработки корпусных деталей, а второй - для деталей типа тел вращения. Для смены инструмента применяют в обоих типах ГПМ манипуляторы или промышленные роботы, а также комплектную замену магазина инструментов.

Гибкая производственная ячейка (ГПЯ) - это совокупность нескольких ГПМ и системы обеспечения функционирования совместно с управляющими средствами вычислительной техники, осуществляющая комплекс технологических операций, способная работать автономно и в составе ГПС при изготовлении изделий в пределах подготовленного запаса заготовок и инструмента.

Гибкая автоматизированная линия (ГАЛ) - это разновидность ГПС, в которой оборудование расположено в заданной последовательности технологических операций.

Гибкий автоматизированный участок (ГАУ) - это ГПС, в которой предусмотрено изменение последовательности использования технологического оборудования.

Гибкий автоматизированный цех (ГАЦ) - это ГПС для изготовления изделий(узлов) заданной номенклатуры, включающая в себя несколько ГАУ или ГАЛ с общей транспортно-складской системой и локальной вычислительной сетью (ЛВС).

Автоматический завод (АЗ) - завод, состоящий из ГАЦ, в том числе цеха автоматической сборки и упаковки готовой продукции. Центральная ЭВМ АЗ связана ЛВС с ЭВМ нижних уровней.

Автоматизированный транспорт ГПС подразделяют на две основные группы: конвейерного типа (в том числе подвесной) и самоходные тележки (так называемые робокары). Последние разделяются на рельсовые и безрельсовые. Наибольшую гибкость транспортных потоков обеспечивают безрельсовые средства, так как они позволяют выполнять разворот на месте, слияние маршрутов, отход от маршрута на заданное расстояние для пропуска встречного транспорта, наращивание числа тележек и т.д.

Самоходные тележки выполняют с различным способом наведения на траекторию движения: индукционным, фотоэлектрическим (инфракрасное излучение), лазерным и навигационным. На борту тележки находятся аккумуляторы питания двигателей перемещения и микро-ЭВМ для управления ими.

Автоматические линии (АЛ), роторные линии (РЛ) применяются в массовом производстве.

В автоматических линиях время тратится на обработку и транспортировку. На роторных линиях обработка ведется во время транспортировки. Другими словами происходит совмещение во времени обработки и транспортировки, что дает дополнительный эффект.

Переналаживаемые автоматические линии (ПАЛ) создаются таким образом, что заранее предусматривается возможность изготовления нескольких поколений изделий. На переналадку тратится 1-2 недели. Например, меняется модель изделия линия сохраняется.

Аналогично строится ГАЛ. Разница в том, что время на переналадку меньше за счет гибкости.

Узкономенклатурная ГАЛ обеспечивает одновременный выпуск разных изделий или позаказный выпуск (переналадка занимает 1-2 часа). Отсутствует жесткий маршрут.

ГАУ - гибкий автоматизированный участок в отличие от линии нет цепочки оборудования, выстроенной по последовательности операций.

ГПЯ - малая система, объединяющая 2-3 станка.

5. Техническое обеспечение и вычислительные сети комплексно-автоматизированных машиностроительных предприятий

Основу технического обеспечения современных комплексно-автоматизированных машиностроительных предприятий составляют автоматизированные рабочие места на базе персональных компьютеров и рабочих станций, серверы и (или) центральные вычислительные машины, а также вычислительные сети. Структура технических средств во многом определяется организационной структурой предприятия. Основные подразделения, выполняющие функции автоматизированного управления предприятием и производством, сбыта и сопровождения, технической подготовки производства и управления технологическими процессами должны иметь свои центральные вычислительные средства, с помощью которых ведутся соответствующие базы данных. Рабочие места подразделений связываются с центральными вычислительными средствами этих подразделений с помощью локальных вычислительных сетей. В свою очередь центральные вычислительные средства связываются вычислительными сетями друг с другом.Примерная схема комплекса технических средств автоматизированного предприятия представлена на рис.5.1.

Рис.5.1 Схема комплекса технических средств автоматизированного предприятия

6. Уровни представления знаний

Любая проектируемая система состоит из элементов и связей между ними. Формально структуру системы (изделия или процесса) можно представить в виде упорядоченной пары S=<A,R>, где A есть множество элементов системы, а R- множество отношений между этими элементами. Отсюда следует, что классификация проектируемых систем может быть произведена с использованием одного из двух фундаментальных критериев различия: а) по типу элементов, образующих систему; б) по типу отношений, связывающих эти элементы в систему[2]. Классификационные критерии а) и б) можно рассматривать как ортогональные, т.е. независимые.

Примером использования критерия а) служит традиционное разделение науки и техники на дисциплины и специальности, каждая из которых занимается определенным типом элементов(табл.4).Поскольку элементы разных типов требуют разных экспериментальных средств для сбора данных, классификация по критерию а) имеет экспериментальную основу.

Критерий б) дает совершенно иную классификацию систем: класс задается определенным типом отношений, а тип элементов, на которых определены эти отношения, не фиксируется. Такая классификация связана с обработкой данных, а не с их сбором, и основа ее преимущественно теоретическая.

Самыми большими классами систем по критерию б) являются классы, описывающие различные эпистемологические уровни, т.е. уровни знания относительно рассматриваемых явлений[2].

Системная методология представляет собой совокупность методов изучения свойств различных классов систем и решения системных задач, т.е. задач, касающихся отношений в системах. Ядром системологии является классификация систем с точки зрения отношений. Главная задача системной методологии - предоставление в распоряжение потенциальных пользователей, представляющих разные дисциплины и предметные области, методов решения всех определенных типов системных задач.

Каркасом иерархической классификации систем в системологии является иерархия эпистемологических уровней систем (см. табл.6.1).

Самый нижний уровень в этой иерархии, обозначаемый как уровень 0,- это система, различаемая исследователем как система. На этом уровне система определяется через множество свойств (переменных), множество потенциальных состояний (значений) этих свойств и операционный способ описания смысла этих состояний в терминах значений соответствующих атрибутов данной системы.

Для определенных на этом уровне систем используется термин исходная система, указывающий на то, что подобная система является, по крайней мере потенциально, источником эмпирических данных. В литературе для этих систем используется также название "система без данных", обозначающее, что система этого уровня представляет простейшую стадию процесса исследования систем, не использующую данные о доступных переменных.

Иными словами на уровне 0 рассматриваются характеристики и взаимосвязи между свойствами (переменными) исследуемой (проектируемой) системы.

На более высоких эпистемологических уровнях системы отличаются друг от друга уровнем знаний относительно переменных соответствующей исходной системы. В системах более высокого уровня используются все знания систем более низких уровней и, кроме того, содержатся дополнительные знания, недоступные низшим уровням. Таким образом, исходная система содержится во всех системах более высоких уровней.

Таблица 6.1. Системологическая классификация знаний

Традиционная классификация прикладных областей

Эпистемологическая классификация

Наука

Техника

Другие области

Эпистемологические уровни

Физика

Хи-

мия

Меха-

ника

Электро

ника

Меди-

цина

Музыка

Уровни 4,5 МЕТАСИСТЕМЫ

Отношения между определенными ниже отношениями

Уровень 3

СТРУКТУРИРОВАННЫЕ СИСТЕМЫ

Отношения между

определенными ниже системами

Уровень 2

ПОРОЖДАЮЩИЕ СИСТЕМЫ

Модели, генерирующие определенные ниже данные

Уровень 1

СИСТЕМЫ ДАННЫХ

Данные, структура которых определена ниже

Уровень 0

ИСХОДНЫЕ СИСТЕМЫ

Язык определения данных

После того как исходная система дополнена данными, т.е. фактическими состояниями основных переменных при определенном наборе параметров, рассматривают новую систему (исходную систему с данными) как определенную на эпистемологическом уровне 1 [2]. Системы этого уровня называются системами данных. В зависимости от задачи данные могут быть получены из наблюдений или с помощью измерений (как в задаче моделирования систем) или определены как желательные состояния (в задаче проектирования систем).

Уровень 2 применительно к задачам автоматизации проектирования представляет собой уровень базы знаний генерации значений переменных, определяющих свойства изделий и технологических процессов. На этом уровне задаются инвариантные параметрам функциональные связи основных переменных, в число которых входят переменные, определяемые соответствующей исходной системой и, возможно, некоторые дополнительные. Каждое правило преобразования базы знаний на этом уровне обычно представляет собой однозначную функцию, присваивающую каждому элементу множества переменных, рассматриваемых в этом правиле в качестве выходного, единственное значение из множества допустимых.

Поскольку задачей генерации свойств является реализация процесса, при котором состояния основных переменных могут порождаться по множеству параметров при любых начальных или граничных условиях, системы уровня 2 называются порождающими системами (generative system).

Применительно к конструированию на уровне 2 располагаются базы знаний, связанные с расчетом конструкций.

Применительно к проектированию технологических процессов на уровне 2 располагаются базы знаний по выбору заготовок, формированию набора операций и переходов, расчету режимов обработки, расчету норм времени и т.п.

На эпистемологическом уровне 3 системы, определенные как порождающие системы (или иногда системы более низкого уровня), называются подсистемами общей системы. Эти подсистемы могут соединяться в том смысле, что они могут иметь некоторые общие переменные. Системы этого уровня называются структурированными системами (structured system). Применительно к задачам автоматизации проектирования это - уровень структурного синтеза.

На эпистемологических уровнях 4 и выше системы состоят из набора систем, определенных на более низком уровне, и некоторой инвариантной параметрам метахарактеристики (правила, отношения, процедуры), описывающей изменения в системах более низкого уровня. Требуется, чтобы системы более низкого уровня имели одну и ту же исходную систему и были определены на уровне 1, 2 или 3. Это - уровни, необходимые для формирования концептуальных И/ИЛИ графов.

Рассмотренная классификация эпистемологических уровней тесно связана с основными научными дисциплинами информатики: математической лингвистикой, теорией баз данных, теорией искусственного интеллекта, вычислительной геометрией и машинной графикой.

Язык представления инженерных знаний

Под базой знаний (БЗ) понимают набор взаимосвязанных правил принятия решений специального типа, обеспечивающих получение новых данных на основе анализа имеющихся данных.

Элементарная порождающая система в САПР представляет собой обобщенный функциональный блок. Наиболее удачным и широко распространенным представлением функциональных блоков является стандарт IDEF0. В этом стандарте функциональный блок имеет конструкцию, приведенную на рис.6.1.

Рис.6.1. Функциональный блок IDEF0

В продукционных системах искусственного интеллекта элементом представления знаний является правило-продукция. Такое правило содержит предусловие, определяющее применимость его при конкретном состоянии переменных базы данных (если <условие>, то <действие>).

Приведенные выше теоретические схемы необходимо представить в форме, удобной для их определения человеком при вводе знаний в компьютер. Наиболее простой формой является таблица рис. 6.2.

Такая таблица содержит все элементы функционального блока, представленного на рис.6.1. Наименования параметров должны выбираться из словаря системы, также как и их имена идентификаторы, необходимые для написания формул. Условие представляет собой ограничения, накладываемые на входные и управляющие параметры и определяющие область определения функции, реализуемой модулем.

Модуль: < Имя>

Наименование: <Описание функции>

Наименование параметра

Имя

Значение

1.

2. Вход (I) и управление (C)

3.

Условие (C)

4. Выход (O)

Адрес

Механизм (M)

Рис.6.2. Внешнее представление модуля инженерных знаний

На рис.6.2 дано внешнее представление модуля инженерных знаний, реализующих элементарные порождающие системы [4]. В верхней части первой таблицы блока записано условие его применения pi(xi) в совокупности с аргументами Xi , а в нижней набор значений функции Yi.

Сама функция Rk содержится в нижней части первой таблицы или во второй таблице модуля. На рис.6.3 рис.6.13 приведены внешние представления различных типов модулей инженерных знаний.

Неструктурированная совокупность модулей инженерных знаний в определенной прикладной области представляет собой базу знаний этой области.

Наименования и имена входных, управляющих и выходных переменных МИЗ должны выбираться из словаря базы знаний (Табл.6.2).

Таблица 6.2 Словарь

Наименование

Имя

Тип

Диаметр оси стандартный, мм

Длина оси стандартная, мм

Ширина фаски, мм

Диаметр буртика, мм

Ширина буртика, мм

Радиус галтели, мм

Радиус скругления буртика, мм

Марка материала

Изгибающий момент, Н*мм

Допустимое напряжение изгиба, МПа

Диаметр оси исходный, мм

Длина оси исходная, мм

Тип оси

Номер детали

Диаметр оси расчетный, мм

d

L

c

D

H

r1

r2

Марка

Mi

Ti

Lo

ТО

Ном

dr

R

R

R

R

R

R

R

S

R

R

R

R

S

I

R

Словарь представляет собой аналог списка терминов и обозначений, который часто помещается в начале инженерной книги.

От такого списка он отличается наличием графы, определяющей тип данных. Используются данные трех типов: действительные числа (R), целые числа (I) и перечисляемые символьные переменные (S).

Для каждой переменной последнего типа должен быть составлен список допустимых значений.

Например, переменная «Тип оси» в словаре (табл.6.2) может принимать два значения:

ось гладкая

ось с буртиком

Механизмы модулей инженерных знаний (МИЗ) должны обеспечивать реализацию всех функций, которые используются при написании инженерных книг.

Простейшая функция это присваивание значений выходным переменным (рис.6.3).

При задании ограничений числовых переменных используются круглые и квадратные скобки, между которыми через запятую записываются два числа: допустимые наименьшее и наибольшее.

При использовании круглых скобок крайние значения исключаются из числа допустимых, а квадратных включаются.

При задании неограниченных диапазонов одно из крайних значений отсутствует. Например, диапазон всех положительных чисел задается такой записью (0,).

С точки зрения структуры IDEF0 приведенный на рис.6.3 МИЗ имеет две управляющие и одну выходную переменные.

Механизмы модулей срабатывают, когда становятся известными значения входных и управляющих переменных и они удовлетворяют заданным ограничениям.

Если рассматривать этот МИЗ как правило-продукцию, то он эквивалентен следующему предложению: «если диаметр оси исходный больше 0 и меньше или равен 30 мм и марка материала сталь 45 улучшенная, то допустимое напряжение изгиба равно 0.85 МПа».

Модуль: M2

Разработчик: Евгенев Г. Б.

Наименование: Определение допустимого напряжения

Источник информации: Анурьев В.И. Справочник конструктора, т.2, табл.8, стр.21

Наименование

Имя

Ограничение

Диаметр оси исходный, мм

Марка материала

do

Марка

(0, 30]

45 улучшенная

Допустимое напряжение

изгиба, МПа

Ti

0.85

Рис. 6.3. Внешнее представление модуля - присваивания

В инженерных книгах функциональные зависимости часто представляются в виде формул.

Внешнее представление модуля - формулы приведено на рис.6.4. Здесь управляющей переменной является тип оси, который может принимать значение «ось гладкая» или «ось с буртиком».

Входными переменными являются изгибающий момент и допустимое напряжение изгиба, значения которых используются при расчете выходной переменной диаметра оси расчетного, который равен корню кубическому из величины изгибающего момента, деленного на десятую долю допустимого напряжения изгиба.

Модуль: M1

Разработчик: Евгенев Г. Б.

Наименование: Расчет диаметра оси

Источник информации: Анурьев В.И. Справочник конструктора, т.2, стр.9

Наименование

Имя

Ограничение

Тип оси

Изгибающий момент, Нмм

Допустимое напряжение изгиба, МПа

TO

Mi

Ti

ось гладкая,

ось с буртиком

(0.,95000)

[0.6,0.95]

Диаметр оси расчетный, мм

dr

(Mi/(0.1*Ti))^(1/3)

Рис.6.4. Внешнее представление модуля - формулы

Имеется возможность с помощью одного МИЗ присваивать значения переменным и производить вычисления по набору взаимосвязанных формул (рис.6.5). При этом предшествующие выходные переменные могут использоваться для определения последующих выходных переменных.

Модуль: V13

Разработчик: Евгенев Г. Б.

Наименование: Расчет номинальной величины деформации

Источник информации: Шувалов С. А. Методические указания по расчету волновых зубчатых передач на ЭВМ. Изд. МГТУ им. Н.Э. Баумана, 1987

Наименование

Имя

Ограничение

Тип редуктора

Передаточное отношение заданное

Число зубьев гибк. колеса предвар.

TипРед

uz

zf

волновой одновенцовый

(0,)

Коэф. увеличения вращ. момента при пуске

K1

1.9

Номинальная вел.

радиальной деформации

NWo

0.84+0.001*uz+1.6*10^(-3) *K1*uz^(1/2)+0.15*10^(-3) *K1*uz

Глубина захода зубьев допуст., мм

hd

4*NWo-(4.6-4*NWo)*zf/10^3-2.45

Рис.6.5. Внешнее представление комбинированного модуля

С помощью МИЗ типа формул можно формировать текстовые переменные, например, обозначения изделий, тексты содержания технологических операций и переходов и т.д.

На рис.6.6 приведен пример формирования содержания перехода механической обработки в соответствии с ЕСТД.

При значениях входных переменных Per=”Точить”, ElObr=”канавку”, NoEl=1, DinPer2=”кольц.”, DinPer4=”окончательно” содержание перехода будет иметь такой вид: ”Точить кольц. канавку 1 окончательно”. Функция STR обеспечивает перевод данных из числовой формы в строковую.

Модуль: TKP3

Разработчик: Евгенев Г. Б.

Наименование: Формирование содержания

Наименование

Имя

Ограничение

Переход обработки резанием

Элемент обрабатываемый

Номер элемента

Дополнит. информация перехода 2

Дополнит. информация перехода 4

Количество элементов

Per

ElObr

NoEl

DinPer2

DinPer4

KolEl

[1,)

Номер элемента строковый

Содержание перехода

NoElStr

SodPer

STR(NoEl:0)

Per+” “+ DinPer2+” “+ ElObr+” “+ NoElStr+” “+ DinPer4

Рис.6.6. Внешнее представление модуля - формулы формирования текстовой переменной

Функциональные зависимости в инженерных книгах часто имеют табличную форму представления. Для ввода таких зависимостей в базы знаний используются модули знаний с механизмами в виде таблиц.

Модуль: M5

Разработчик: Евгенев Г. Б.

Наименование: Назначение стандартной длины

Источник информации: Анурьев В.И. Справочник конструктора, т.2, стр.8

Наименование

Имя

Ограничение

Диаметр оси стандартный, мм

Длина оси исходная, мм

d

Lo

(0, 22]

(25, 30]

Длина оси стандартная, мм

L

Таблица: TABL1

Длина оси

Диаметр оси стандартный, мм

исходная, мм

5

6

8

10

12

16,18

20

22

(25, 28]

28

28

28

28

28

28

(28, 30]

30

30

30

30

30

30

30

Пример такого модуля для присвоения численных значений приведен на рис.6.7. Прилагаемая к модулю таблица может иметь шапку и боковик. На Рис. шапка содержит значения стандартных диаметров осей, а боковик диапазоны исходных длин осей. На основе этих двух входов таблица позволяет определить значения выходной переменной стандартной длины оси. Таблица может быть недоопределенной, т.е. содержать пустые клетки, как это имеет место на рис.6.7. При значениях входных переменных, соответствующих этим клеткам модуль не даст решения. В таком случае проектировщик должен будет изменить входные данные, например исходную длину оси.

Модуль: DVKV

Разработчик: Евгенев Г. Б.

Наименование: Расчет диаметра впускного канала конического углового

Источник информации: Пантелеев А.П. и др. Справочник по проектированию оснастки для переработки пластмасс. М.: Машиностроение, 1986, с.86, табл.28

Наименование

Имя

Ограничение

Метод формования

литье под давлением

Форма впускного канала

Характеристический размер изделия, мм

Hizd

коническая угловая

(0,)

Диаметр впускного канала расчетный, мм

Dvpr

Таблица: TABL2

Характеристический

размер изделия, мм

(0, 0.6]

0.5

(0.6, 2.4]

0.85*Hizd

(2.4,)

2.0

Рис.6.8. Внешнее представление модуля с одновходовой таблицей

Таблицы могут содержать не только числовые, но и символьные константы, а также формулы. На рис.6.8 приведен пример МИЗ с одновходовой таблицей, содержащей как константы, так и формулу. Таблицы могут давать как однозначное, так и многозначное решение. МИЗ с неоднозначной таблицей для структурного синтеза водометного движителя приведен на рис.6.9.

Модуль: VМ33

Разработчик: Евгенев Г. Б.

Наименование: Назначение типа узла соединения энергии с РТ

Источник информации: Папир А.И. Водометные движители малых судов. Л, “Судостроение”, 1970, стр.92.

Наименование переменной

Имя

Значение

Вид изделия

Коэффициент быстроходности насоса

ns

водометный движитель с гребным винтом

(0, )

Тип узла соединения энергии с РТ

Таблица: TABL3

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


© 2010 РЕФЕРАТЫ