бесплатные рефераты

Построение экономической модели с использованием симплекс-метода

S2 , X2

S1 , X1

В

S1 , X2

S2 , X1

 

Применяя аналогичную процедуру ко всем экстремальным точкам
рис. 1 , можно убедиться в том
, что любую последующую экстре-
мальную точку всегда можно определить путем взаимной замены
по одной переменной в составе базисных и небазисных переменных
( предыдущей смежной точки ) . Этот фактор существенно упрощает
реализацию вычислительных процедур симплекс-метода.

Рассмотренный процесс взаимной замены переменных приводит
к необходимости введения двух новых терминов
. Включаемой пе-
ременной называется небазисная в данный момент переменная ,
которая будет включена в множество базисных переменных на сле-
дующей итерации ( при переходе к смежной экстремальной точке ) .
Исключаемая переменная — это та базисная переменная , которая
на следующей итерации подлежит исключению из множества ба-
зисных переменных .

 

Вычислительные процедуры симплекс-метода .

 

 симплекс-алгоритм состоит из следующих шагов.

Шаг 0. Используя линейную модель стандартной формы , опреде-
ляют начальное допустимое базисное решение путем приравнива-
ния к нулю п — т ( небазисных ) переменных.

Шаг 1. Из числа текущих небазисных ( равных нулю ) перемен-
ных выбирается включаемая в новый базис переменная , увеличение
которой обеспечивает улучшение значения целевой функции. Если
такой переменной нет , вычисления прекращаются , так как текущее
базисное решение оптимально . В противном случае осуществляется
переход к шагу 2.

Шаг 2. Из числа переменных текущего базиса выбирается исклю-
чаемая переменная , которая должна принять нулевое значение ( стать
небазисной ) при введении в состав базисных новой переменной .

Шаг 3. Находится новое базисное решение , соответствующее
новым составам небазисных и базисных переменных . Осуществляется переход к шагу 1.

Поясним процедуры симплекс-метода на примере решения нашей зада-
чи
. Сначала необходимо представить целевую функцию и ограничения модели в стандартной форме:

                        Z -    X1    -    25X2 +0S1 -0S2 =   0 ( Целевая функция )

          5X1  +  100X2 +  S1           = 1000 ( Ограничение )

           -X1    +     2X2          + S2 = 0 ( Ограничение )   

Как отмечалось ранее , в качестве начального пробного решения
используется решение системы уравнений , в которой две переменные принимаются равными нулю . Это обеспечивает единст-
венность
и допустимость получаемого решения . В рассматриваемом
случае очевидно, что подстановка
X1 = X2 = 0 сразу же приводит к следующему результату: S1 = 1000 , S2 = 0 ( т. е. решению , соответствующему точке А на рис. 1 ) . Поэтому точку А можно использовать как начальное допустимое решение . Величина Z в этой точке равна нулю , так как и X1 и X2  имеют нулевое значение . Поэтому , преобразовав уравнение целевой функции так , чтобы его правая часть стала равной нулю , можно убедиться в том , что правые части уравнений целевой функции и ограничений полностью характеризуют начальное решение . Это имеет место во всех случаях , когда начальный базис состоит из остаточных переменных.            

Полученные результаты удобно представить в виде таблицы :

 

Базисные переменные

Z

X1

X2

S1

S2

Решение

 

Z

1

-1

- 25

0

0

0

Z - уравнение

S1

0

5

100

1

0

1000

S1 -уравнение

S2

0

-1

2

0

1

0

S2 - уравнение

 

 

Эта таблица интерпретируется следующим образом. Столбец
«
Базисные переменные » содержит переменные пробного базиса S1 ,
S
2 ,  значения которых приведены в столбце « Решение » . При
этом подразумевается , что небазисные переменные
X1 и X2 ( не пред-
ставленные в первом столбце
) равны нулю . Значение целевой функ-
ции
Z = 1*0 + 25*0 + 0*1000 + 0*1  равно нулю , что и показано в последнем столбце таблицы .

 Определим , является ли полученное пробное решение наи-
лучшим ( оптимальным ) . Анализируя
Z - уравнение , нетрудно заме-
тить
, что обе небазисные переменные X1 и X2 , равные нулю , имеют
отрицательные коэффициенты
. Всегда выбирается переменная с большим абсолютным значением отрицательного коэффициента ( в Z - уравнении ) , так как практический опыт вычислений показывает , что в этом случае оптимум достигается быстрее .

Это правило составляет основу используемого в вычислительной
схеме симплекс-метода условия оптимальности
, которое состоит в
том
, что , если в задаче максимизации все небазисные переменные в
Z - уравнении имеют неотрицательные коэффициенты , полученное пробное решение является оптимальным . В противном случае в ка-
честве новой базисной переменной следует выбрать ту
, которая имеет
наибольший по абсолютной величине отрицательный коэффициент
.

Применяя условие оптимальности к исходной таблице , выберем
в качестве переменной
, включаемой в базис , переменную Х2 . Исклю-
чаемая переменная должна быть выбрана из совокупности базисных
переменных
S1 , S2 . Процедура выбора исключаемой переменной предполагает проверку условия допустимости , требующего , чтобы в качестве исключаемой переменной выбиралась та из пере-
менных текущего
базиса , которая первой обращается в нуль при уве-
личении включаемой переменной
X2 вплоть до значения , соответствующего смежной экстремальной точке .

Интересующее нас отношение ( фиксирующее искомую точку пе-ресечения и идентифицирующее исключаемую переменную ) можно
определить из симплекс-таблицы. Для этого в столбце , соответствующем вводимой переменной
X2 , вычеркиваются отрицательные и нулевые элементы ограничений . Затем вычисляются отношения постоянных , фигурирующих в правых частях этих ограничений , к оставшимся элементам столбца , соответствующего вводимой переменной X2 . Исключаемой переменной будет та переменная текущего базиса , для которой указанное выше отношение минимально.

Начальная симплекс-таблица для нашей задачи , получаемая после проверки условия допустимости ( т. е. после вычисления соответствующих отношений и определения исключаемой переменной ) , воспроизведена ниже . Для удобства описания вычислительных процедур , осуществляемых на следующей итерации , введем ряд необходимых определений . Столбец симплекс-таблицы , ассоциированный с вводимой переменной , будем называть ведущим столбцом . Строку , соответствующую исключаемой переменной , назовем ведущей строкой ( уравнением ) , а элемент таблицы , находящийся на пересечении ведущего столбца и ведущей строки , будем называть ведущим элементом .

После того как определены включаемая и исключаемая пере-
менные ( с использованием условий оптимальности и допустимости ) ,
следующая итерация ( поиск нового базисного решения ) осуществля-
ется методом исключения переменных , или методом Гаусса — Жордана . Этот процесс изменения базиса включает вычислительные процедуры двух типов .

Тип 1 ( формирование ведущего уравнения ) .

Новая ведущая строка = Предыдущая ведущая строка / Ведущий элемент

Тип 2 ( формирование всех остальных уравнений , включая Z - yравнение ) .

Новое уравнение = Предыдущее уравнение —

é Коэффициент       ù

ê ведущего столбца  ê * ( Новая ведущая строка ) .   

ê предыдущего          ê

ë уравнения              û

Выполнение процедуры типа 1 приводит к тому , что в новом
ведущем уравнении ведущий элемент становится равным единице .
В результате осуществления процедуры типа 2 все остальные коэф-
фициенты , фигурирующие в ведущем столбце , становятся равными
нулю . Это эквивалентно получению базисного решения путем ис-
ключения
вводимой переменной из всех уравнений , кроме ведущего .
Применяя к исходной таблице процедуру 1 , мы делим
S2 - уравнение на ведущий элемент , равный 1 .

 

Базисные переменные

Z

X1

X2

S1

S2

Решение

Z

 

 

 

 

 

 

S1

 

 

 

 

 

 

S2

0

-1/2

1

0

1/2

0

 

Чтобы составить новую симплекс-таблицу , выполним необходимые вычислительные процедуры типа 2 .

1. Новое Z - уравнение .

старое Z - уравнение : ( 1   -1      -25    0    0     0 )

                     ( - ( -25 ) *  ( 0   -1/2     1     0   1/2    0 )

                                        ( 1   -131/2   0     0  121/2  0 )

2.   Новое S1 - уравнение

     старое S1 - уравнение : ( 0    5   100   1     0    1000 )

                           ( - 100 ) *    ( 0   -1/2   1      0    1/2       0   )

                                               ( 5  0     1   -50   1000 )       

        

    Новая симплекс-таблица будет иметь вид :

             

Базисные переменные

Z

X1

X2

S1

S2

Решение

 

Z

1

-131/2

0

0

121/2

0

Z - уравнение

S1

0

55

0

1

-50

Страницы: 1, 2, 3, 4


© 2010 РЕФЕРАТЫ