|
||||||||||||||||
Как следует из теории решения задач ЛП , ценность ресурсов всегда можно определить по значениям коэффициентов при переменных начального базиса , фигурирующих в Z - уравнении оптимальной симплекс-таблицы , таким образом Y1 = 27/110 , а Y2 = 5/22 . Покажем , каким образом аналогичный результат можно получить непосредственно из симплекс-таблицы для оптимального решения . Рассмотрим Z - уравнение симплекс-таблицы для оптимального решения нашей задачи Z = 2455/11 - ( 27/110S1 + 5/22S2 ) . Положительное приращение переменной S1
относительно ее текущего 5X1 + 100X2 + S1 = 1000 увеличение S1 эквивалентно снижению количества денег
выделеных на рекламу ( далее мы будем использовать в тексте , как первый ресурс
) . Отсюда следует , что уменьшение количества денег выделеных на
рекламу вызывает пропорциональное уменьшение целевой функции с тем же коэффициентом пропорциональности , равным 27/110 .
Так как Несмотря на то что ценность различных ресурсов
, определяемая Заметим , что теневая цена ( ценность ресурса
) характеризует ин- Максимальное изменение запаса ресурса
При решении вопроса о том , запас какого из
ресурсов следует В нашей задаче запас первого ресурса изменился на D1 т. е. запас бюджета составит 1000 + D1 . При положительной величине D1 запас данного ресурса увеличивается , при отрицательной — уменьшается . Как правило , исследуется ситуация , когда объем ресурса увеличивается ( D1 > 0 ) , однако , чтобы получить результат в общем виде , рассмотрим оба случая . Как изменится
симплекс-таблица при изменении величины за-
| ||||||||||||||||
Уравнение |
Значения элементов правой части на соответствующих итерациях |
|||||||||||||||
|
( начало вычислений ) |
1 |
2 ( оптимум ) |
|||||||||||||
Z |
0 |
0 |
2455/11 |
|||||||||||||
1 |
1000 |
1000 + D1 |
1000/55 + D1 |
|||||||||||||
2 |
0 |
0 |
91/11 |
Фактически вce
изменения правых частей ограничений , обуслов-
ленные введением D1 , можно определить непосредственно по данным ,
содержащимся в симплекс-таблицах . Прежде всего заметим , что
на каждой итерации новая правая часть каждого ограничения пред-
ставляет собой сумму двух величин: 1)
постоянной и 2) члена , ли-
нейно зависящего от D1 .
Постоянные соответствуют числам , которые
фигурируют на соответствующих итерациях в правых частях ограничений симплекс-таблиц до введения D1 . Коэффициенты при D1 во вторых слагаемых равны коэффициентам при S1 на той же итерации . Так , например , на последнеи
итерации ( оптимальное решение ) постоянные ( 2455/11 ; 1000/55 ; 91/11
) представляют собои числа , фигурирующие в правых частях ограничении
оптимальной симплекс-таблицы до введения D1. Коэффициенты ( 27/110 ; 1/55 ; 1/110
) равны коэффициентам при S1 в той же симплекс-таблице потому , что эта переменная
связана только с первым ограничением . Другими словами , при анализе влияния
изменений в правой части второго ограничения нужно пользоваться коэффициентами
при переменной S2 .
Какие выводы можно сделать из полученных результатов?
Так как введение D1 сказывается лишь на правой части симплекс-
таблицы , изменение запаса ресурса может повлиять
только на
допустимость решения . Поэтому D1 не может принимать значений ,
при которых какая-либо из (
базисных ) переменных становится отри-
цательной . Из этого следует ,
что величина D1 должна быть огра-
ничена таким интервалом значений , при которых
выполняется ус-
ловие неотрицательности правых частей ограничений в результи-
рующей симплекс-таблице , т . е .
X1 = 1000/55 + ( 1/55 )D1 => 0 ( 1 )
X2 = 91/11 + ( 1/110 )D1 => 0 ( 2 )
Для определения допустимого
интервала изменения D1 рассмо-
трим два случая .
Случай 1: D1 => 0 Очевидно , что оба неравнества при этом условии всегда будут неотрицательными .
Случай 2: D1 < 0 . Рåøàåì íåðàâåíñòâà : ( 1 )
( 1/55 )D1 => - 1000/55 . Из этого следует , что D1 => - 1000
( 2 )
( 1/110 )D1 => - 91/11 . Из этого следует , что D1 => - 1000
Объединяя результаты ,
полученные для обоих случаев , можно
сделать вывод , что при - 1000 <=
D1 <= + ¥ решение
рассматриваемой зада-
чи всегда будет допустимым , любое значение D1 ,
выходящее за
пределы указанного интервала , приведет к недопустимости решения и
новой совокупности базисных переменных .
Теперь рассмотрим в каких пределах может изменяться запас ресурса 2 анализ проведем по аналогичной схеме :
Запас 2-ого ресурса изменился на D2 т . е . запас рекламного времени составит 0 + D2 . Как изменилась симплекс-таблица при изменении величины запаса ресурса на D2 ïðîèëëþñòðèðîâàíî íèæå .
Уравнение
Значения элементов правой части на соответствующих итерациях
( начало вычислений )
1
2 ( оптимум )
Z
0
0
2455/11
1
1000
1000
1000/55
2
0
0 + D2
91/11 + D2
Найдем интервал ограничивающий величину D2
X1 = 1000/55 - ( 50/55 )D2 ( 1 )
X2 = 91/11 + ( 1/22 )D2 ( 2 )
Для определения допустимого
интервала изменения D1 рассмо-
трим два случая .
Случай 1: D2 => 0 Рåøàåì íåðàâåíñòâà : ( 1 )
( 50/55 )D2 <= 1000/55 из этого неравенства следует , что D2 <= 20
( 2 )
Очевидно , что 2-ое уравнение неотрицательно на данном участке .
Объединяя 2 уравнения для Случая 1 мы получим интервал для D2 .
D2 Î [ 0 ; 20 ]
Случай 2: D2 < 0 . Рåøàåì íåðàâåíñòâà : ( 1 )
( 50/55 )D2 => - 1000/55 . Из этого следует , что D2 <= 20
( 2 )
( 1/22 )D2 => - 91/11 . Из этого следует , что D2 => - 200
Объединяя 2 уравнения для Случая 2 мы получим интервал для D2 .
D2 Î [ - 200 ; 0 ]
Объединяя 2 случая мы получим интервал [ - 200 ; 20 ]
Максимальное изменение коэффициентов удельной
прибыли ( стоимости )
Наряду с определением
допустимых изменений запасов ресур-
сов представляет интерес и установление интервала допустимых
изменений коэффициентов удельной прибыли ( или стоимости ) .
Следует отметить , что уравнение целевой функции никогда не
используется в качестве ведущего уравнения . Поэтому лю-
бые изменения коэффициентов целевой функции окажут влияние
только на Z-уравнение результирующей симплекс-таблицы . Это
означает , что такие изменения могут сделать полученное
решение
неоптимальным . Наша цель заключается в том , чтобы найти интер-
валы значений изменений коэффициентов целевой функции ( рас-
сматривая каждый из коэффициентов отдельно ) , при которых оп-
тимальные значения
переменных остаются неизменными .
Чтобы показать, как выполняются соответствующие вычисле-
ния , положим , что удельный объем сбыта ,
ассоциированной с переменной
X1 изменяется от 1 до 1 + d1 где d1 может быть как положительным , так и отрицательным числом . Целевая функция в этом случае принимает следующий вид:
Z = ( 1 + d1 )X1 + 25X2
Если воспользоваться данными
начальной симплекс-таблицы и
выполнить все вычисления , необходимые для ( получения заключн-
тельной симплекс-таблицы , то последнее Z-уравнение будет
выгля-
деть следующим образом:
Базисные переменные
X1
X2
S1
S2
Решение
Z
0
0
27/110+1/55d1
5/22-50/55d1
2455/11+1000/55d1
|
Коэффициенты при базисных переменных X1 , X2 и остаточных я равными нулю . Это уравнение отличается от Z-уравнения до введения d1 , только наличием членов , содержащих d1 . Коэффициенты при d1 равны кoэффициентам при соответствующих переменных в Z-уравнении симплекс-таблицы для полученного ранее оптимального решения
Базисные переменные
X1
X2
S1
S2
Решение
X1
1
0
1/55
-50/55
1000/55
Мы рассматриваем X1 - уравнение
, так как коэффициент
именно при
этон переменной в выражении для целевои функции изменился
на d1 .
Оптимальные значения переменных будут
оставаться неизмен-
ными при значениях d1 ,
удовлетворяющих условию неотрицатель-
ности ( задача на отыскание максимума ) всех коэффициентов при не-
базисных переменных в Z-уравнении . Таким образом , должны
выполняться следующие неравенства :
27/110 + 1/55d1 => 0
5/22 - 50/55d1 => 0
Из первого неравенства получаем , что d1 => - 13,5 , а из второго следует что d1 <= 1/4 . Эти результаты определяют пределы изменения
коэффициента C1 в виде следующего соотношения : - 13,5 <= d1 <= 1/4 . Та-
ким образом , при уменьшении коэффициента целевой функции при
переменной X1 до значения , равного 1 + ( - 13,5 ) = - 12,5 или при его увеличении до 1 + 13,5 = 14,5 оптимальные значения переменных остаются
неизменными . Однако оптимальное значение Z будет изменяться
( в соответствии с выражением 2455/11 + 1000/55d1 , где -
13,5 <= d1 <= 1/4
X2 изменяется от 25 до 25 + d2 где d2 может быть как положительным , так и отрицательным числом . Целевая функция в этом случае принимает следующий вид:
Z = ( 25 + d2 )X2 + X1
Все предыдущее обсуждение касалось исследования изменения коэффициента при переменной , которой поставлено в соответствие ограничение , фигурирующее в симплекс-таблице . Однако такое ограничение имеется лишь в том случае , когда данная переменная является базисной ( например X1 и X2 ) . Если переменная небазисная , то в столбце , содержащем базисные переменные , она не будет представлена .
Любое изменение коэффициента целевой функции при небазисной переменной приводит лишь к тому , что в заключительной симплкс-таблице изменяется только этот коэффициент . Рассмотрим в качестве иллюстрации случай , когда коэффициент при переменной S1 ( первой остаточной переменной ) изменяется от 0 до d3 . Выполнение преобразований , необходимых для получения заключительной симплекс таблицы , приводит к следующему результирующему Z-уравнению :
Базисные переменные
X1
X2
S1
S2
Решение
Z
0
0
27/110+1/55d1
5/22
2455/11