бесплатные рефераты

Построение экономической модели с использованием симплекс-метода

Положительное значение остаточной переменной указывает на
неполное использование соответствующего ресурса , т . е . данный
ресурс является недефицятным. Если же остаточная переменная рав-
на нулю , это свидетельствует о полном потреблении соответствующе-
го ресурса. Из таблицы видно , что наши ресурсы являются дефицитными . В случае недефицитности  любое увиличение ресурсов сверх установленного максимального значения привело бы лишь к тому , что они стали бы еще более недефнинтными . Оптимальное решение задачи при этом осталось бы неизменным.

Ресурсы, увеличение запасов которых позволяет улучшить ре-
шение ( увеличить прибыль ) , — это остаточные переменные
S1 и S2 , по-
скольку из симплекс-таблицы для оптимального решения видно
,
что они дефицитные
. В связи с этим логично поставить следующий
вопрос: какому из дефицитных ресурсов следует отдать предпочте-
ние при вложении дополнительных средств на увеличение их запа-
сов , с тем чтобы получить от них максимальную отдачу ? Ответ на
этот вопрос будет дан в следующем подразделе этой главы , где рас-
сматривается ценность различных ресурсов .

 

Ценность ресурса

 

 

Ценность ресурса характеризуется величиной улучшения опти-
мального значения
Z , приходящегося на единицу прироста объема
данного ресурса
.

Информация для оптимального решения задачи представлена в симплекс-таблице . Обратим внимание на значения коэффициентов Z - уравнения , стоящих при переменных начального базиса S1 и S2 . Выделим для удобства соответстзующую часть симплекс-таблицы :

 

Базисные переменные

Z

X1

X2

S1

S2

Решение

Z

1

0

0

27/110

5/22

2455/11

 

Как следует из теории решения задач ЛП , ценность ресурсов всегда можно определить по значениям коэффициентов при переменных начального базиса , фигурирующих в Z - уравнении оптимальной симплекс-таблицы , таким образом Y1 = 27/110 , а Y2 = 5/22 .

Покажем , каким образом аналогичный результат можно получить непосредственно из симплекс-таблицы для оптимального решения . Рассмотрим Z - уравнение симплекс-таблицы для оптимального решения нашей задачи

Z = 2455/11 - ( 27/110S1 +  5/22S2 ) .

Положительное приращение переменной S1 относительно ее текущего
нулевого значения приводит к пропорциональному уменьшению
Z ,
причем коэффициент пропорциональности равен 27/110 . Но , как следует из первого ограничения модели :

5X1 + 100X+ S1 = 1000

увеличение S1 эквивалентно снижению количества денег выделеных на рекламу ( далее мы будем использовать в тексте , как первый ресурс ) . Отсюда следует , что уменьшение количества денег выделеных на рекламу вызывает пропорциональное уменьшение целевой функции с тем же коэффициентом пропорциональности , равным 27/110 . Так как
мы оперируем с линейными функциями , полученный вывод можно
обобщить , считая , что и увеличение количества денег выделеных на рекламу ( эквивалентное введению избыточной переменной
S1 < 0 ) приводит к пропорциональному увеличению Z с тем же коэффициентом пропорциональности , равным 27/110 . Аналогичные рассуждения справед-
ливы для ограничения 2 .

Несмотря на то что ценность различных ресурсов , определяемая
значениями переменных
Yi , была представлена в стоимостном  выражении , ее нельзя отождествлять с действительными це-
нами
, по которым возможна закупка соответствующих ресурсов .
На самом деле речь идет о некоторой мере
, имеющей экономическую
природу н количественно характеризующей ценность ресурса только относительно полученного оптимального значения целевой функции .
При изменении ограничении модели соответствующие экономические
оценки будут меняться даже тогда , когда оптимизируемый процесс
предполагает применение тех же ресурсов . Поэтому при характерис-
тике ценности ресурсов экономисты предпочитают использовать
такие терминыт , как теневая цена , скрытая цена , или более специ-
фичный термин — двойственная оценка .

Заметим , что теневая цена ( ценность ресурса ) характеризует ин-
тенсивность улучшения оптимального значения
Z . Однако при этом
не фиксируется интервал значений увеличения запасов ресурса ,
при которых интенсивность улучшения целевой функции остается
постоянной . Для большинства практических ситуаций логично пред-
положить наличие верхнего предела увеличения запасов , при пре-
вышении которого соответствующее ограничение становится избы-
точным , что в свою очередь приводит к новому базисному решению
и соответствующим ему новым теневым ценам . Ниже определяется
нитервал значений запасов ресурса , при которых соответствую-
щее ограничение не становится избыточным .

Максимальное изменение запаса ресурса

 

При решении вопроса о том , запас какого из ресурсов следует
увеличивать в первую очередь , обычно используются теневые цены
Чтобы определить интервал значений изменения запаса ресурса ,
при
которых теневая цена данного ресурса , ( фигурирующая в заклю-
чительной симплекс-таблице , остается неизменной , необходимо выполнить ряд дополнительных вычислений . Рассмотрим сначала
 соответствующие вычислительные процедуры , а затем покажем , как
требуемая информация может быть получена из симплекс-таблицы
для оптимального решения .

В нашей задаче запас первого ресурса изменился на D1 т. е. запас бюджета  составит 1000 + D1 . При положительной величине D1 запас данного ресурса увеличивается , при отрицательной — уменьшается . Как правило , исследуется ситуация , когда объем ресурса увеличивается            ( D1 > 0 ) , однако , чтобы получить результат в общем виде , рассмотрим оба случая .

Как изменится симплекс-таблица при изменении величины за-
паса ресурса на
D1 ? Проще всего получить ответ на этот вопрос .
если ввести
D1 в правую часть первого ограничения начальной сим-
плекс-таблицы и затем выполнить все алгебраические преобразова-
ния , соответствующие последовательности итераций . Поскольку
правые части ограничений никогда не используются в качестве
ведущих элементов , то очевидно , что на каждой итерации
D1 будет
оказывать влияние только на правые части ограничений .

 

Уравнение

Значения элементов правой части на соответствующих итерациях

 

( начало вычислений )

1

2 ( оптимум )

Z

0

0

2455/11

1

1000

1000 + D1

1000/55 + D1

2

0

0

91/11

 

Фактически вce изменения правых частей ограничений , обуслов-
ленные введением
D1 , можно определить непосредственно по данным ,
содержащимся в симплекс-таблицах . Прежде всего заметим , что
на каждой итерации новая правая часть каждого ограничения пред-
ставляет собой сумму двух величин:
1) постоянной и 2) члена , ли-
нейно зависящего от
D1 . Постоянные соответствуют числам , которые
фигурируют на соответствующих итерациях в правых частях ограничений
симплекс-таблиц до введения D1 . Коэффициенты при D1 во вторых слагаемых равны коэффициентам при S1 на той же итерации . Так , например , на последнеи итерации ( оптимальное решение ) постоянные       ( 2455/11 ; 1000/55 ; 91/11 ) представляют собои числа , фигурирующие в правых частях ограничении оптимальной симплекс-таблицы до введения D1. Коэффициенты ( 27/110 ; 1/55 ; 1/110 ) равны коэффициентам при S1  в той же симплекс-таблице потому , что эта переменная связана только с первым ограничением . Другими словами , при анализе влияния изменений в правой части второго ограничения нужно пользоваться коэффициентами при переменной S2 .

       Какие выводы можно сделать из полученных результатов?
Так как введение
D1 сказывается лишь на правой части симплекс-
таблицы
, изменение запаса ресурса может повлиять только на
допустимость решения . Поэтому
D1 не может принимать значений ,
при которых какая-либо из (
базисных ) переменных становится отри-
цательной
. Из этого следует , что величина D1 должна быть огра-
ничена таким интервалом значений
, при которых выполняется ус-
ловие неотрицательности правых частей ограничений в результи-
рующей симплекс-таблице , т . е .

X1 = 1000/55  + ( 1/55 )D1 => 0                                 ( 1 )

X2 = 91/11 + ( 1/110 )D1 => 0                                   ( 2 )

Для определения допустимого интервала изменения D1 рассмо-
трим два случая .

Случай 1: D1 => 0 Очевидно , что оба неравнества при этом условии всегда будут неотрицательными .

Случай 2: D1 < 0 . Рåøàåì íåðàâåíñòâà :  ( 1 )

( 1/55 )D1 => - 1000/55 . Из этого следует , что D1 => - 1000

                                                                          ( 2 )        

( 1/110 )D1 => - 91/11 . Из этого следует , что D1 => - 1000

 

Объединяя результаты , полученные для обоих случаев , можно
сделать вывод , что при - 1000
<= D1 <= + ¥ решение рассматриваемой зада-
чи всегда будет допустимым , любое значение
D1 , выходящее за
пределы указанного интервала , приведет к недопустимости решения и
новой совокупности базисных переменных .

            Теперь рассмотрим в каких пределах может изменяться запас ресурса 2 анализ проведем по аналогичной схеме :

Запас 2-ого ресурса изменился на D2 т . е . запас рекламного времени составит 0 + D2 . Как изменилась симплекс-таблица при изменении величины запаса ресурса на D2 ïðîèëëþñòðèðîâàíî íèæå .

 

Уравнение

Значения элементов правой части на соответствующих итерациях

 

( начало вычислений )

1

2 ( оптимум )

Z

0

0

2455/11

1

1000

1000

1000/55

2

0

0 + D2

91/11 + D2

    

Найдем интервал ограничивающий величину D2

 

X1 = 1000/55 - ( 50/55 )D2                   ( 1 )

X2 = 91/11 + ( 1/22 )D2                     ( 2 )

 

            Для определения допустимого интервала изменения D1 рассмо-
трим два случая .

       Случай 1: D2 => 0 Рåøàåì íåðàâåíñòâà :  ( 1  )

( 50/55 )D2 <= 1000/55 из этого неравенства следует , что D2 <= 20

                                                                 ( 2 )

Очевидно , что 2-ое уравнение неотрицательно на данном участке .

Объединяя 2 уравнения для Случая 1 мы получим интервал для D2 .

D2 Î [ 0 ; 20 ]

Случай 2: D2 < 0 . Рåøàåì íåðàâåíñòâà :  ( 1 )

( 50/55 )D2 => - 1000/55 . Из этого следует , что D2 <= 20

                                                                                 ( 2 ) 

( 1/22 )D2 => - 91/11 . Из этого следует , что D2 => - 200

Объединяя 2 уравнения для Случая 2 мы получим интервал для D2 .

      D2 Î [ - 200 ; 0 ]

      Объединяя 2 случая мы получим интервал [ - 200 ; 20 ]

 

 Максимальное изменение коэффициентов удельной

прибыли ( стоимости )

Наряду с определением допустимых изменений запасов ресур-
сов представляет интерес и установление интервала допустимых
изменений коэффициентов удельной прибыли ( или стоимости ) .
     Следует отметить
, что уравнение целевой функции никогда не используется в качестве ведущего уравнения . Поэтому лю-
бые изменения коэффициентов целевой функции окажут влияние
только на
Z-уравнение результирующей симплекс-таблицы . Это
означает
, что такие изменения могут сделать полученное решение
неоптимальным
. Наша цель заключается в том , чтобы найти интер-
валы значений изменений коэффициентов целевой функции ( рас-
сматривая каждый из коэффициентов отдельно ) , при которых оп-
тимальные значения переменных остаются неизменными .

Чтобы показать, как выполняются соответствующие вычисле-
ния , положим , что удельный объем сбыта , ассоциированной с переменной

X1 изменяется от 1 до 1 + d1 где d1 может быть как положительным , так и отрицательным числом . Целевая функция в этом случае принимает следующий вид:

Z = ( 1 + d1 )X1 + 25X2

Если воспользоваться данными начальной симплекс-таблицы и
выполнить все вычисления , необходимые для ( получения заключн-
тельной симплекс-таблицы , то последнее
Z-уравнение будет выгля-
деть следующим образом:

 

 

Базисные переменные

X1

X2

S1

S2

Решение

Z

0

0

27/110+1/55d1

5/22-50/55d1

2455/11+1000/55d1

           


 

Коэффициенты при базисных переменных X1 , X2 и остаточных я равными нулю . Это уравнение отличается от Z-уравнения до введения d1 , только наличием членов , содержащих d1 . Коэффициенты при d1 равны кoэффициентам при соответствующих переменных в Z-уравнении симплекс-таблицы для полученного ранее оптимального решения

 

Базисные переменные

X1

X2

S1

S2

Решение

X1

1

0

1/55

-50/55

1000/55

 

 

Мы рассматриваем X1 - уравнение , так как коэффициент именно при
этон переменной в выражении для целевои функции изменился
на
d1 .

Оптимальные значения переменных будут оставаться неизмен-
ными при значениях
d1 , удовлетворяющих условию неотрицатель-
ности ( задача на отыскание максимума ) всех коэффициентов при не-
базисных
переменных в
Z-уравнении . Таким образом , должны выполняться следующие неравенства :

27/110 + 1/55d1 => 0

5/22 - 50/55d1 => 0

Из первого неравенства получаем , что d1 => - 13,5 , а из второго следует что d1 <= 1/4 . Эти результаты определяют пределы изменения коэффициента C1 в виде следующего соотношения : - 13,5 <= d1 <= 1/4 . Та-
ким образом , при уменьшении коэффициента целевой функции при
переменной
X1 до значения , равного 1 + ( - 13,5 ) = - 12,5   или при его увеличении до 1 + 13,5 = 14,5 оптимальные значения переменных остаются
неизменными . Однако оптимальное значение
Z будет изменяться ( в соответствии с выражением 2455/11 + 1000/55d1 , где - 13,5 <= d1 <= 1/4

            X2  изменяется от 25 до 25 + d2 где d2 может быть как положительным , так и отрицательным числом . Целевая функция в этом случае принимает следующий вид:

Z = ( 25 + d2 )X2 + X1

            Все предыдущее обсуждение касалось исследования изменения коэффициента при переменной , которой поставлено в соответствие ограничение , фигурирующее в симплекс-таблице . Однако такое ограничение имеется лишь в том случае , когда данная переменная является базисной ( например X1 и X2 ) . Если переменная небазисная , то в столбце , содержащем базисные переменные , она не будет представлена .

            Любое изменение коэффициента целевой функции при небазисной переменной приводит лишь к тому , что в заключительной симплкс-таблице изменяется только этот коэффициент . Рассмотрим в качестве иллюстрации случай , когда коэффициент при переменной S1 ( первой остаточной переменной ) изменяется от 0 до d3 . Выполнение преобразований , необходимых для получения заключительной симплекс таблицы , приводит к следующему результирующему Z-уравнению :

Базисные переменные

X1

X2

S1

S2

Решение

Z

0

0

27/110+1/55d1

5/22

2455/11

 

 

 

 

 


Страницы: 1, 2, 3, 4


© 2010 РЕФЕРАТЫ