|
||||||||||||
В новом решении X1 = 0 и S2 = 0 . Значение Z не изменяется . Заметим ,
что новая симплекс-таблица обладает такими же ха- Из последней таблицы следует , что на очередной итерации в со- Z-ypaвнении равен -131/2 . Исходя из условия допустимости , определяем , что исключаемой переменной будет S1 . Отношения , фигурирующие в правой части таблицы , показывают , что в новом базисном решении значение включаемой переменной X1 будет равно 1000/55 ( = минимальному отношению ) . Это приводит к увеличению целевой функции на ( 1000/55 ) * ( -131/2 ) = ( 2455/11 ) . К получению симплекс-таблицы , соответствующей новой итерации , приводят следующие вычислительные операции метода Гаусса—Жордана. 1) Новое ведущее S1 - уравнение = Предыдущее S1 - уравнение / ( 55 ) .
| ||||||||||||
Базисные переменные |
Z |
X1 |
X2 |
S1 |
S2 |
Решение |
||||||
Z |
|
|
|
|
|
|
||||||
S1 |
0 |
1 |
0 |
1/55 |
- 50/55 |
1000/55 |
||||||
X2 |
|
|
|
|
|
|
2) Новое Z - уравнение = Предыдущее Z - уравнение - ( -131/2 ) * Новое /ведущее уравнение :
( 1 -131/2 0 0 121/2 0 )
- ( -131/2 ) * ( 0 1 0 1/55 -50/55 1000/55 )
( 1 0 0 27/110 5/22 2455/11 )
3) Новое X2 - уравнение = Предыдущее X2 - уравнение - ( -1/2 ) * Новое ведущее уравнение :
( 0 -1/2 1 0 1/2 0 )
- ( - 1/2 ) * ( 0 1 0 1/55 -50/55 1000/55 )
( 0 0 1 1/110 1/22 91/11 )
В результате указанных
преобразований получим следующую симп-
лекс-таблицу .
Базисные переменные
Z
X1
X2
S1
S2
Решение
Z
1
0
0
27/110
5/22
2455/11
X1
0
1
0
1/55
-50/55
1000/55
X2
0
0
1
1/110
1/22
91/11
В новом базисном решении X1=1000/55 и X2=91/11 . Значение Z увеличилось с 0 ( предыдущая симплекс-таблица ) до 2455/11 ( последняя симплекс-таблица ) . Этот результирующий прирост целевой функции обусловлен увеличением X1 от О до 1000/55 , так как из Z - строки предыдущей симплекс-таблицы следует , что возрастанию данной переменной на единицу соответствует увеличение целевой функции на( -131/2 ) .
Последняя симплекс-таблица
соответствует оптимальному реше-
нию задачи, так как в Z - уравнении ни одна
из небазисных переменных не фигурирует с отрицательным коэффициентом.
Получением этой pезультирующей
таблицы и завершаются вычислительные процедуры симплекс-метода .
В рассмотренном выше примере алгоритм
симплекс-метода ис-
пользован при решении задачи , в которой целевая функция подлежала максимизации
. В случае минимизации целевой функции в этом
алгоритме необходимо изменить только условие оптимальности :
в качестве новой базисной переменнойследует выбирать ту переменную , которая в Z - уравнении имеет наибольший положительный коэффициент . Условия допустимости в обоих случаях ( максимизации и минимизации ) одинаковы .
Представляется целесообразным дать теперь
окончательные формулировки обоим условиям ,
используемым в симплекс-методе .
Условие оптимальности . Вводимой переменной в задаче максимизации ( минимизации ) является небазисная переменная , имеющая в Z -уравнении наибольший отрицательный ( положительный ) коэффициент , В случае равенства таких коэффициентов для нескольких небазисных переменных выбор делается произвольно , если все коэффициенты при небазисных переменных в Z - уравнении неотрицательны (неположительны) , полученное решение является оптимальным .
Условие допустимости , в задачах максимизации и минимизации в качестве исключаемой переменной выбирается та базисная переменная , для которой отношение постоянной в правой части соответствующего ограничения к ( положительному ) коэффициенту ведущего столбца минимально. В случае равенства этого отношения для нескольких базисных переменных выбор делается произвольно .
Оптимальное решение
С точки зрения практического
использования результатов ре-
шения задач ЛП классификация переменных , предусматривающая
их разделение на базисные и небазнсные , не имеет значения и при
анализе данных , характеризующих оптимальное решение , может
не учитываться . Переменные , отсутствующие в столбце « Базисные
переменные » , обязательно имеют нулевое значение . Значения ос-
тальных переменных приводятся в столбце « Решение » . При интер-
претации результатов оптимизации в нашей задаче нас прежде всего интересует
количество времени , которое закажет наша фирма на радио и телевидение , т. е. значения управляемых переменных X1 и X2
. Используя данные ,
содержащиеся в симплекс-таблице для оптимального решения , основные результаты
можно представить в следующем виде :
|
Управляемые переменные
Оптимальные значения
Решение
X1
1000/55
Время выделяемое фирмой на телерекламу
X2
91/11
Время выделяемое фирмой на радиорекламу
Z
2455/11
Прибыль получаемая от рекламы .
Заметим, что Z = X1 + 25X2 = 1000/55 + 25 * 91/11 = 2455/11 . Это решение соответствует данным заключительной симплекс-таблицы .
Статус ресурсов
Будем относить ресурсы к дефицитным или
недифицитным в зависимости от того , полное или частичное их использо-
вание предусматривает оптимальное решение задачи . Сейчас цель
состоит в том , чтобы получить соответствующую информацию непос-
редственно из симплекс-таблицы для оптимального решения . Од-
нако сначала следует четко уяснить следующее . Говоря о ресурсах ,
фигурирующих в задаче ЛП , мы подразумеваем , что установлены
некоторые максимальные пределы их запасов , поэтому в соответст-
вующих исходных ограничениях должен использоваться знак <= .
Следовательно , ограничения со знаком => не могут рассматриваться
как ограничения на ресурсы
. Скорее , ограничения такого типа отра-
жают то обстоятельство , что решение должно удовлетворять опре-
деленным требованиям , например обеспечению минимального спро-
са или минимальных отклонений от установленных структурных
характеристик производства (
сбыта ) .
В модели , построенной для нашей задачи , фигурирует ограничение со знаком <= . Это требование можно рассматривать как ограничение на соответствующий « ресурс » , так как увеличение спроса на продукцию эквивалентно расширению « представительства » фирмы на рынке сбыта .
Из вышеизложенного следует ,
что статус ресурсов ( дефицитный
или недефицитный ) для любой модели ЛП можно установить не-
посредственно из результирующей симплекс-таблицы , обращая вни-
мание на значения остаточных переменных . Применительно к нашей задаче можно
привести следующую сводку результатов :
Ресурсы
Остаточная переменная
Статус ресурса
Ограничение по бюджету
S1
Дефицитный
Превышение времени рекламы радио над теле
S2
Дефицитный