бесплатные рефераты

Построение экономической модели с использованием симплекс-метода

1000

S1 -уравнение

X2

0

-1/2

1

0

1/2

0

X2 - уравнение

       

 

 

В новом решении X1 = 0 и S2 = 0 . Значение Z не изменяется .

Заметим , что новая симплекс-таблица обладает такими же ха-
рактеристиками
, как и предыдущая : только небазисные переменные
 
X1 и S2 равны нулю , а значения базисных переменных , как и раньше ,
представлены в столбце « Решение »
. Это в точности соответствует
результатам
, получаемым при использовании метода Гаусса—Жор-
дана
.

Из последней таблицы следует , что на очередной итерации в со-
ответствии с условием оптимальности в качестве вводимой перемен-
ной следует выбрать
X1 , òак как коэффициент при этой переменной в

Z-ypaвнении равен -131/2 . Исходя из условия допустимости , определяем , что исключаемой переменной будет S1 . Отношения , фигурирующие в правой части таблицы , показывают , что в новом базисном решении значение включаемой переменной X1 будет равно 1000/55 ( = минимальному отношению ) . Это приводит к увеличению целевой функции на ( 1000/55 ) *    (   -131/2 ) = ( 2455/11 ) .

К получению симплекс-таблицы , соответствующей новой итерации , приводят следующие вычислительные операции метода Гаусса—Жордана.

1)  Новое ведущее  S1 - уравнение = Предыдущее S1 - уравнение / ( 55 ) .

 

Базисные переменные

Z

X1

X2

S1

S2

Решение

Z

 

 

 

 

 

 

S1

0

1

0

1/55

- 50/55

1000/55

X2

 

 

 

 

 

 

 

 

2) Новое  Z - уравнение = Предыдущее  Z - уравнение - ( -131/2 ) * Новое /ведущее уравнение :

                                         ( 1   -131/2  0     0     121/2       0     )

                    - ( -131/2 ) *  (  0      1     0    1/55   -50/55    1000/55  )

                                         ( 1      0     0    27/110   5/22   2455/11 )

3) Новое X2 - уравнение = Предыдущее  X2 - уравнение - ( -1/2 ) * Новое ведущее уравнение :

                                               ( 0  -1/2   1     0       1/2        0    )

                         - ( - 1/2  ) *     ( 0    1     0    1/55  -50/55    1000/55 )

                                         (  0     1   1/110    1/22     91/11  )

 

 

В результате указанных преобразований получим следующую симп-
лекс-таблицу .

 

Базисные переменные

Z

X1

X2

S1

S2

Решение

Z

1

0

0

27/110

5/22

2455/11

X1

0

1

0

1/55

-50/55

1000/55

X2

0

0

1

1/110

1/22

91/11

В новом базисном решении X1=1000/55 и X2=91/11 . Значение Z увеличилось с 0 ( предыдущая симплекс-таблица ) до 2455/11  ( последняя симплекс-таблица ) . Этот результирующий прирост целевой функции  обусловлен увеличением X1 от О до 1000/55 , так как из Z - строки предыдущей симплекс-таблицы следует , что возрастанию данной переменной на единицу соответствует увеличение целевой функции на( -131/2 ) .

Последняя симплекс-таблица соответствует оптимальному реше-
нию задачи, так как в
Z - уравнении ни одна из небазисных переменных не фигурирует с отрицательным коэффициентом. Получением этой pезультирующей таблицы и завершаются вычислительные процедуры симплекс-метода .

В рассмотренном выше примере алгоритм симплекс-метода ис-
пользован при решении задачи , в которой целевая функция подлежала максимизации . В случае минимизации целевой функции в этом
алгоритме необходимо изменить только условие оптимальности :
в качестве новой базисной переменнойследует выбирать ту переменную , которая в
Z - уравнении имеет наибольший положительный коэффициент . Условия допустимости в обоих случаях ( максимизации и минимизации ) одинаковы . Представляется целесообразным дать теперь окончательные формулировки обоим условиям , используемым в симплекс-методе .

Условие оптимальности . Вводимой переменной в задаче максимизации ( минимизации ) является небазисная переменная , имеющая в Z -уравнении наибольший отрицательный ( положительный ) коэффициент , В случае равенства таких коэффициентов для нескольких небазисных переменных выбор делается произвольно , если все коэффициенты при небазисных переменных в Z - уравнении неотрицательны (неположительны) , полученное решение является оптимальным .

Условие допустимости , в задачах максимизации и минимизации в качестве исключаемой переменной выбирается та базисная переменная , для которой отношение постоянной в правой части соответствующего ограничения к ( положительному ) коэффициенту ведущего столбца минимально. В случае равенства этого отношения для нескольких базисных переменных выбор делается произвольно .

 

Оптимальное решение

 

 

С точки зрения практического использования результатов ре-
шения задач ЛП классификация переменных , предусматривающая
их разделение на базисные и небазнсные , не имеет значения и при
анализе данных , характеризующих оптимальное решение , может
не учитываться . Переменные , отсутствующие в столбце « Базисные
переменные » , обязательно имеют нулевое значение . Значения ос-
тальных переменных приводятся в столбце « Решение » . При интер-
претации результатов оптимизации в нашей задаче нас прежде всего интересует количество времени , которое закажет наша фирма на радио и телевидение
,  т. е. значения управляемых переменных X1 и X2 . Используя данные , содержащиеся в симплекс-таблице для оптимального решения , основные результаты можно представить в следующем виде :

 

 


Управляемые переменные

Оптимальные значения

Решение

X1

1000/55

Время выделяемое фирмой на телерекламу

X2

91/11

Время выделяемое фирмой на радиорекламу

Z

2455/11

Прибыль получаемая от рекламы .

 

Заметим, что Z = X1 + 25X2 = 1000/55 + 25 * 91/11 = 2455/11 . Это решение соответствует данным заключительной симплекс-таблицы .

 

Статус ресурсов

 

 

Будем относить ресурсы к дефицитным или недифицитным в зависимости от того , полное или частичное их использо-
вание предусматривает оптимальное решение задачи . Сейчас цель
состоит в том , чтобы получить соответствующую информацию непос-
редственно из симплекс-таблицы для оптимального решения . Од-
нако сначала следует четко уяснить следующее . Говоря о ресурсах ,
фигурирующих в задаче ЛП , мы подразумеваем , что установлены
некоторые максимальные пределы их запасов , поэтому в соответст-
вующих исходных ограничениях должен использоваться знак
<= .
Следовательно
, ограничения со знаком => не могут рассматриваться
как ограничения на ресурсы
. Скорее , ограничения такого типа отра-
жают то обстоятельство
, что решение должно удовлетворять опре-
деленным требованиям
, например обеспечению минимального спро-
са или минимальных отклонений от установленных структурных
характеристик производства (
сбыта ) .

В модели , построенной для нашей задачи , фигурирует ограничение со знаком <= . Это требование можно рассматривать как ограничение на соответствующий « ресурс » , так как увеличение спроса на продукцию эквивалентно расширению « представительства » фирмы на рынке сбыта .

Из вышеизложенного следует , что статус ресурсов ( дефицитный
или недефицитный ) для любой модели ЛП можно установить не-
посредственно из результирующей симплекс-таблицы , обращая вни-
мание на значения остаточных переменных . Применительно к нашей задаче можно привести следующую сводку результатов :

 

Ресурсы

Остаточная переменная

Статус ресурса

Ограничение по бюджету

S1

Дефицитный

Превышение времени рекламы радио над теле

 

S2

Дефицитный

 

Страницы: 1, 2, 3, 4


© 2010 РЕФЕРАТЫ