бесплатные рефераты

Управление портфелем краткосрочных государственных ценных бумаг


Удельный вес сегмента товарных фьючерсов, функционирующий в системе FORTS, остался равным 0,4%. Наиболее ликвидными контрактами в декабре оставались фьючерсные контракты на золото с оборотом торгов 4,0 млрд. руб. против 4,8 млрд. руб. в ноябре. Сделки по фьючерсам на дизельное топливо в рассматриваемый период не заключались, обороты торгов по контрактам на нефть сорта "Юралс", аффинированное серебро в слитках и сахар оставались незначительными.

Доля рынка опционов (система FORTS) в суммарном обороте биржевого рынка фьючерсов и опционов в декабре составила 18% против 17% в ноябре. Обороты торгов опционами на фьючерсный контракт на индекс РТС сократились при увеличении оборотов по опционам на фьючерсные контракты на отдельные акции (в основном за счет роста оборотов по опционам на фьючерсные контракты на акции ОАО "ГМК "Норильский никель", ОАО "Ростелеком" и ОАО Банк ВТБ). Как и в сегменте валютных фьючерсов, на валютном сегменте рынка опционов наблюдалось сокращение оборотов торгов.

На основании вышеизложенного в первой главе, можно сказать следующие. На рынке ценных бумаг вращается большое количество ценных бумаг, разных по своей природе и назначению. Одним из основных видов, торгуемых на фондовом рынке, наряду с акциями выступают такие долговые ценные бумаги как облигации.

Государственные облигации являются долговыми обязательствами правительства страны перед собственным населением, они характеризуют такое понятие, как внутренний долг государства. Государственные облигации используются инвесторами преимущественно как безопасное убежище для своих средств, в особенности в периоды падения фондовых рынков. Поскольку риск дефолта по таким облигациям чрезвычайно низок, уровень доходности по ним также относительно невысок. Когда цены на облигации падают, фактическая доходность по ним возрастает, поэтому идеальный период для покупки государственных облигаций наступает тогда, когда показатель доходности по ним достигает максимума.

Развитие фондового рынка России сейчас идет интенсивным путем, о чем свидетельствуют темпы роста объемов сделок, проводимых на нем. Поэтому все больше людей и организаций вовлекается в процесс купли-продажи ценных бумаг и существует необходимость осваивания и использования различных методик оценки ценных бумаг и формирования портфелей.



2.       Оценка долговых ценных бумаг

2.1                                    Оценка стоимости облигации


Как известно, облигации представляют широкий класс долговых ценных бумаг с ограниченным сроком обращения и фиксированным доходом. По сроку обращения различают краткосрочные, среднесрочные и долгосрочные облигации[5].

Краткосрочные облигации обычно являются бескупонными. При анализе их удобно рассматривать как однопериодные активы, доход по которым образуется за счет разницы цен покупки и продажи (погашения).

Облигации с более длительными сроками обращения обычно являются купонными, т.е. предусматривают периодические выплаты процентов (купонного дохода) в течение срока обращения и возврат номинальной стоимости облигации при погашении.

Менее типичным видом облигаций являются так называемые бессрочные облигации, т.е. облигации, погашение которых не ожидается в обозримом будущем. Примерами бессрочных облигаций (undated, irredeemable gilts) являются несколько типов государственных облигаций, обращающихся на фондовом рынке Великобритании. Наиболее известными среди них являются "2,5-процентные консоли" 1888 г. выпуска. Однако анализ подобных ценных бумаг представляет скорее теоретической интерес.

В настоящем разделе приводится краткое изложение методов анализа основных типов "многопериодных" облигаций в предположении полной определенности относительно потоков платежей по ним и ставок дисконтирования.


Анализ купонных облигаций

Для определения текущей стоимости купонной облигации воспользуемся общей формулой (1) при некоторых предположениях, учитывающих особенности потока платежей по купонным облигациям.


(1)


Обозначим:

 - количество периодов владения, оставшихся до погашения облигации;

F - финальная выплата по облигации (principal), совпадающая с ее номинальной стоимостью;

q>0 - ставка купонного дохода (купонная доходность) за один период владения в долях;

 - частота выплат купонного дохода за один период владения;

R>0 - ставка дисконтирования купонного дохода, соответствующая одному периоду владения.

Ставка R интерпретируется как ожидаемая доходность вложений.

Относительно потока платежей  предполагается:



Предполагается также, что платежи в виде купонного дохода поступают в конце каждого периода и подлежат капитализации с начислением сложных процентов.

Рассмотрим вначале случай, когда  и , т.е. когда период выплат купонного дохода совпадает с периодом владения облигацией. С учетом сделанных предположений из (1) следует, что текущая стоимость купонной облигации определяется соотношением:

(2)


Где:


(3)


- текущая стоимость ренты с Т единичными выплатами и постоянной ставкой наращения R;


(4)


- текущая стоимость финальной выплаты по облигации, .

Обозначим  - дисконтный множитель. По формуле для суммы Т первых членов геометрической прогрессии имеем:


(5)


На основании (3)—(5) из (2) следует:


(6)


Если известна текущая рыночная стоимость облигации (цена покупки) Р, то можно оценить инвестиционную привлекательность облигации на основе чистой текущей стоимости NPV и внутренней доходности R*, которая, как известно, является решением уравнения NPV=0, т.е. удовлетворяет тождеству:


(7)


Ставка внутренней доходности облигации R* определяет так называемую полную доходность облигации (доходность к погашению), поскольку учитывает все виды платежей по облигации до момента ее погашения.

Получить явное выражение для ставки R* в общем случае затруднительно, поскольку от нее зависит и величина Fq, поэтому выполним качественный анализ формулы (7).

На основании (7) можно сделать следующие выводы:

• рыночная цена купонной облигации прямо пропорциональна ставке купонного дохода q, причем P>F0 для q>0;

• существует обратная зависимость между рыночной ценой облигации (ценой покупки) и ее доходностью R*.

Для купонных облигаций с несколькими выплатами купонного дохода в течение одного периода владения (т.е. при >1) может быть проведен аналогичный анализ, если предварительно принять:

 - номинальная ставка начисления процентов за один период владения в предположении, что ;

R/m - ставка начисления процентов за один период выплат купонного дохода;

q/m - ставка купонного дохода за один период выплат.

По аналогии с предыдущим случаем можно получить следующую формулу для текущей стоимости облигации:


(8)


Данная формула аналогичным образом может быть приведена к виду (6).


Анализ бессрочных облигаций

Применим описанный метод для анализа бессрочных облигаций.

Предположим, что  и , т.е. период выплат купонного дохода совпадает с периодом владения облигацией, а ее погашение не ожидается в обозримом будущем. При  текущей стоимостью финальной выплаты в формуле (2) можно пренебречь, поскольку по свойству предела


(9)


что влечет  при . Таким образом, для бессрочной облигации


(10)


Так как , то по свойству суммы бесконечной геометрической прогрессии имеем


(11)

На основании (11) из (10) следует:


(12)


Из (12) следует, что текущая стоимость облигации прямо пропорциональна величине выплачиваемого по ней купонного дохода и обратно пропорциональна ожидаемой доходности вложений.

Если Р - рыночная цена покупки облигации, то с учетом (12) ставка R* внутренней доходности облигации, определяемая из условия NPV= V-P=0, равна:


(13)


Обычно ставка доходности, определяемая как отношение купонного дохода к рыночной цене (цене покупки) облигации, называется текущей доходностью (current yield) облигации. Таким образом, в случае бессрочных облигаций полная доходность, определяемая ставкой R*, совпадает с текущей доходностью облигации.


Анализ бескупонных облигаций

В предположении q=0 и  из формулы (2) следует, что текущая стоимость бескупонной Т-периодной облигации совпадает с текущей ценой финальной выплаты, т.е.


(14)


Из (14) и условия  следует, что внутренняя доходность облигации R* удовлетворяет тождеству


(15)


и определяется по формуле


(16)


Ставка R* определяет полную доходность, или доходность к погашению, бескупонной Т-периодной облигации, так как разность между ценой покупки облигации и ее номинальной стоимостью, выплачиваемой при погашении облигации, является единственным источником дохода владельца данной облигации.


Анализ облигаций при наличии временной структуры процентных ставок

Для оценки текущей стоимости облигаций с помощью метода дисконтирования платежей требуется знание ставок дисконтирования для всех будущих периодов владения облигацией. В связи с этим возникает два вопроса[6]:

• можно ли использовать одну и ту же ставку дисконтирования платежей, ожидаемых в различные периоды владения?

• какие ставки используются в качестве ставок дисконтирования ожидаемых платежей при оценке купонных облигаций?

Из практики известно, что ставки доходностей для активов с различными сроками до погашения различаются по величине и находятся в постоянном движении. В каждый момент времени на финансовом рынке имеет место некоторая совокупность процентных ставок (даже для активов с сопоставимой степенью риска), относящихся к активам с различными сроками до погашения. Эта совокупность называется временной структурой процентных ставок. Поэтому ответ на первый вопрос очевиден: каждому будущему периоду должна соответствовать своя ставка дисконтирования, что противоречит ранее сделанному упрощающему предположению о постоянстве ставок дисконтирования.

Ответ на второй вопрос требует более подробных пояснений. Очевидно, ставки дисконтирования платежей, необходимые для оценки стоимости облигаций в текущий момент времени, должны зависеть от временной структуры процентных ставок, сложившейся на финансовом рынке в анализируемый момент времени. Дадим формальное определение понятия "временная структура процентных ставок" и укажем способ определения искомых ставок дисконтирования.

1) Спот-ставки и временная структура процентных ставок.

Для описания временной структуры процентных ставок используются так называемые спот-ставки.

Спот-ставками (spot rates) будем называть соответствующие текущему моменту времени ставки доходности к погашению бескупонных облигаций с различными сроками погашения.

Обозначим:

 - ставка доходности к погашению бескупонной облигации с погашением в конце периода t (t-периодной облигации), при этом индекс "0" указывает на то, что ставка относится к текущему периоду, для которого t=0.

Спот-ставки  определяют внутреннюю доходность соответствующих бескупонных облигаций и поэтому удовлетворяют тождествам типа (15). Таким образом:

а) в случае дискретного дисконтирования


(17)


б) в случае непрерывного дисконтирования


(18)


где  - номинальная стоимость t-периодной бескупонной облигации;  - текущая рыночная стоимость t-периодной бескупонной облигации (цена покупки);  - спот-ставка в случае непрерывно начисляемых процентов[7].

На практике бескупонные облигации, как правило, краткосрочные ценные бумаги, т.е. «реальные» бескупонные облигации со сроком обращения свыше одного года, могут отсутствовать на финансовом рынке. Однако активы, подобные бескупонным облигациям с различными сроками обращения, могут быть получены на основе купонных облигаций. Действительно, купонную Т-периодную облигацию можно рассматривать как портфель, состоящий из Т+1 бескупонной облигации, если предположить, что каждый из Т купонов и финальная выплата являются самостоятельными облигациями.

В качестве спот-ставок  на практике используют доходности к погашению бескупонных государственных облигаций или соответствующих им активов в виде платежей по купонным государственным облигациям.

Данные активы имеют фиксированные сроки обращения и цены погашения. Они не предусматривают промежуточных выплат и, как правило, свободны от риска невыполнения обязательств со стороны эмитента. Поэтому можно считать, что они имеют фиксированную доходность, не подверженную риску невыполнения обязательств (default risk), а также риску изменения процентных ставок (interest rate risk) при совпадении срока инвестирования и срока обращения облигации. В этом смысле бескупонные облигации можно считать безрисковыми активами, что делает их привлекательными для инвесторов. В США рынок подобных активов функционирует в рамках программы STRIPS (Separate Trading of Registered Interest and Principal Securities), разработанной Казначейством США.

Практика показывает, что ставки доходности к погашению (Yield To Maturity - YTM) зависят от срока, оставшегося до погашения облигаций. Подобную зависимость принято называть временной структурой процентных ставок (term structure of interest rate).

Для описания временной структуры процентных ставок на финансовом рынке используется последовательность спот-ставок  где Т- некоторый фиксированный максимальный срок обращения долговых ценных бумаг.

Наличие временной структуры процентных ставок приводит к тому, что краткосрочные, среднесрочные и долгосрочные спот-ставки различаются по величине, т.е. имеет место условие:


(19)


Величина и характер различия спот-ставок меняются с течением времени. Представление о временной структуре процентных ставок может быть получено посредством построения кривой доходности.

2) Кривая доходности.

Кривая доходности (yield curve) - это график зависимости доходности ценных бумаг (YTM) от срока, оставшегося до их погашения.

Кривая доходности может иметь различную форму, например, возрастать или убывать (рис. 1). Заметим, что если бы процентные ставки не зависели от времени, то кривая доходности представляла бы собой прямую горизонтальную линию, проходящую через некоторую точку R на оси ординат. Кривая доходности меняется ежедневно и на практике, очевидно, не является такой гладкой, как это изображено на рисунке.

Причиной "размытости" кривой доходности являются различные специфические особенности ценных бумаг, оказывающие влияние на их доходность. Анализ и интерпретация кривой доходности важны при оценке долговых ценных бумаг.


Рис. 1. Примеры кривых доходностей


Попыткам объяснить форму кривой доходности посвящены теории временной структуры процентных ставок, основанные на различных гипотезах относительно поведения участников рынка. Наиболее известными из этих теорий являются:

·                   теория ожиданий (Expectations Hypothesis);

·                   теория чистых ожиданий (Pure Expectations Hypothesis);

·                   теория предпочтения ликвидности (Liquidity Preference Hypothesis);

·                   теория сегментации рынка (Market Segmentation Hypothesis).

3) Текущая стоимость облигаций.

Финансовая информация в виде значений спот-ставок  обычно доступна участникам рынка, причем последовательность  на развитых рынках охватывает все типовые сроки обращения долговых обязательств, имеющихся на данном рынке. Например, подобная информация на основе казначейских ценных бумаг США регулярно публикуется в выпусках Бюллетеня Казначейства (Treasury Bulletin). Это позволяет финансовым аналитикам оценивать текущую стоимость произвольного долгового обязательства на основе метода дисконтирования платежей. В качестве ставок дисконтирования при этом используются соответствующие спот-ставки. Проиллюстрируем это на примере купонной облигации.

Пусть имеется Т-периодная купонная облигация и для всех периодов выплат купонного дохода известны спот-ставки . Тогда текущая стоимость купонной облигации определяется по формуле:


(20)


или


(21)


где  - текущая стоимость платежа за период t (t=l, 2, ..., Т), которую можно рассматривать как текущую стоимость t-периодной бескупонной облигации.

Таким образом, купонную Т-периодную облигацию можно рассматривать как "портфель" из Т бескупонных облигаций с последовательными сроками погашения .


Форвардные ставки и цены облигаций

Во многих практических задачах, например при покупке или продаже облигаций на фьючерсных рынках, появляется необходимость в определении стоимости и ожидаемой доходности облигаций в будущие периоды.

В связи с этим возникает еще один тип процентных ставок, известных как форвардные ставки.

1) Форвардные ставки.

Форвардными ставками (forward rates) в широком смысле принято называть ставки, которые фиксируются в текущий момент относительно займов или кредитов, которые должны быть получены или предоставлены в некоторый будущий период.

Применительно к долговым ценным бумагам под форвардной ставкой будем иметь в виду ставку, которая устанавливается в текущий момент и характеризует доходность к погашению ценной бумаги, соответствующую некоторому будущему периоду владения.

Обозначим:  - ставка доходности к погашению в периоде t бескупонной облигации со сроком обращения, равным Т-периодам.

Пусть известна временная структура процентных ставок в виде последовательности спот-ставок , t=l, 2, ..., Т. Тогда ставки , удовлетворяющие условию


(1+0)Т=, =1, 2, ..., Т-1, Т>1, (22)


называются форвардными.

Заметим, что условие (22) - это условие эквивалентности двух альтернативных стратегий инвестирования, исключающее возможность получения гарантированного дохода без каких-либо инвестиций, т.е. исключающее арбитражные возможности

Первая стратегия (ей соответствует правая часть соотношения (22)) заключается в инвестировании средств сначала на t периоды, а затем реинвестировании полученной суммы на оставшийся до погашения срок, равный T-t периодам владения. На первом и втором этапах инвестирования используются соответственно спот-ставка Rt для -периодных вложений и форвардная ставка t, соответствующая периоду t. Вторая стратегия (левая часть соотношения (22)) состоит в инвестировании средств сразу на весь срок, оставшийся до погашения облигации под ставку .

Из соотношения (22) может быть найдено представление для форвардных ставок в случае капитализации дохода с использованием формулы сложных процентов. Это представление определяется формулой (23), которая позволяет вычислить по заданным значениям спот-ставок {}, а также комбинациям значений t и Т все необходимые для анализа форвардные ставки:


 (23)


В случае непрерывно начисляемых процентов с учетом обозначения  получаем:



С учетом (20), (22) текущая стоимость купонной облигации может быть представлена в виде


 (24)


Воспользуемся формулами (23) и (24) для нахождения форвардных цен облигаций, т.е. ожидаемых в текущий момент цен облигаций в будущие периоды.

2) Форвардные цены облигаций.

Пусть Vt (=1, 2, ..., Т) - цена облигации в конце t-гo периода владения после выплат по ней всех предусмотренных платежей. Поскольку данные цены соответствуют будущим периодам времени, их принято называть форвардными ценами облигации.

Форвардные цены V,..., V для Т-периодной купонной облигации при известных форвардных ставках {) (=l, 2, ..., T-l) могут быть определены с помощью следующей рекуррентной формулы:


  (25)


Рекуррентная формула (25) основывается на интерпретации текущей стоимости ценной бумаги как некоторой суммы, которая может быть вложена на определенный срок под соответствующую данному сроку и риску вложений ставку. Предполагается, что полученная по окончании срока вложений сумма будет равна стоимости потока платежей по ценной бумаге, представленного на рис. 2


Рис. 2. Схема потока платежей по облигации


В соответствии с указанным принципом стоимость облигации после ее погашения в момент времени Т равна нулю, поскольку после погашения по облигации не ожидается никаких платежей. Таким образом, можно положить Vт=0.

В начале последнего периода по облигации ожидается платеж, равный Ст, поэтому в момент времени Т-1 стоимость облигации должна удовлетворять соотношению:



Откуда следует:



Для цены облигации в момент времени Т-2 (т.е. в начале Т-1-го периода) имеем:



Аналогично для момента времени t, являющегося началом произвольного +1-го периода (= Т-1, Т-2, ..., 1), получаем:


Vt (1+tRt+l)=Vt+1+ Сt+1,


что влечет (25).

При =0 формула (25) эквивалентна формуле (24) и приводит к вычислению текущей стоимости облигации. Приведем некоторые частные случаи формулы (25):

•для купонных облигаций с потоком платежей вида C1=qF, t=l, 2, ...,Т-1; CТ=qF+F получаем выражение вида:



где с целью сохранения общности формально положено

•для бескупонных облигаций, полагая в предыдущем выражении q=0, получаем:



3) Интерпретация кривой доходности.

Форвардные ставки существенно используются в рамках различных теорий временной структуры процентных ставок. Например, в соответствии с теорией чистых ожиданий при отсутствии на рынке арбитражных возможностей устанавливаемые в текущий момент форвардные ставки для будущих периодов должны быть равны ожидаемым в соответствующих будущих периодах спот-ставкам с аналогичными сроками инвестирования. Другими словами (используя терминологию вероятностного подхода ), форвардные ставки должны равняться математическому ожиданию соответствующих спот-ставок.

На данном предположении основана интерпретация формы кривой доходности в рамках теории чистых ожиданий. В качестве примера рассмотрим две стратегии инвестирования на два периода. Первая заключается в покупке двухпериодной бескупонной облигации, доходность к погашению которой определяется спот-ставкой . Вторая стратегия представляет собой так называемую стратегию возобновления (rollover strategy) и состоит в последовательной покупке однопериодных бескупонных облигаций. Доходность к погашению первой однопериодной облигации определяется однопериодной спот-ставкой , а доходность второй облигации - форвардной однопериодной ставкой .

Предположение об отсутствии арбитражных возможностей приводит по аналогии с (22) к тождеству



в котором, в соответствии с теорией чистых ожиданий учтено, что форвардная ставка  равна ожидаемой в будущем периоде спот-ставке - Представим данное соотношение в более удобном для интерпретации виде:


 (26)


На основании (26) можно сделать следующие выводы о форме кривой доходности (см. рис. 1):

1) если кривая доходности имеет наклон вверх, т.е. , то .. Это означает, что инвесторы ожидают в будущем периоде роста краткосрочных (однопериодных) ставок;

2) если кривая доходности имеет наклон вниз, т.е. , то , а значит, инвесторы ожидают в будущем периоде падения краткосрочных ставок;

3) если кривая доходности параллельна оси абсцисс, т.е. , то, и, следовательно, в будущем инвесторы ожидают, что краткосрочные ставки не изменятся.

Очевидно, аналогичные рассуждения могут быть проведены и для произвольного срока инвестирования.


2.2                                    Оценка рисков


Как отмечалось ранее, инвестиции в ценные бумаги в условиях неопределенности сопряжены с риском того, что фактическая доходность вложений может отличаться от ожидаемой доходности. Это дает основание рассматривать доходность R ценной бумаги, соответствующую некоторому периоду владения, как случайную величину, а выбор инвестиционной стратегии осуществлять на основе анализа ее числовых характеристик: математического ожидания, дисперсии, среднеквадратического отклонения и т.д. При этом математическое ожидание  доходности актива соответствует ожидаемой доходности, а дисперсия 2=D() или сред-неквадратическое отклонение  доходности могут использоваться как меры риска вложений в данный актив.

Идеальной для инвестора стратегией инвестирования в рамках данного подхода была бы стратегия, обеспечивающая достижение максимальной ожидаемой доходности при минимальном риске вложений. Однако одновременное достижение этих целей невозможно. Практика работы на финансовых рынках свидетельствует о том, что большему значению ожидаемой доходности обычно сопутствует и большее значение риска вложений.

Риск и доходность связаны тесной однонаправленной зависимостью, что вполне логично, так как любой инвестор требует от более опасных проектов адекватной добавочной прибыли. Величина этой надбавки слабо меняется со временем, что позволяет использовать ее определения стоимости стандартных пакетов бизнесов, например на фондовом рынке. Однако очень часто требуется проанализировать совершенно конкретный проект, имеющий нестандартные риски, в этом случае вопрос измерения этих рисков выходит на передний план. Для того чтобы их определить, мы должны знать[8]:

·   как измерить риск

·   какова связь между возникновением риска и требуемыми премиями за риск.

Один из способов охарактеризовать неопределенность — сказать, что событий происходит меньше, чем можно ожидать. Риск, присущий активам, можно точно выразить описанием всех возможных результатов и вероятности, их возникновения. Однако для реальных активов это сделать трудно, а часто и невозможно. Поэтому стандартными статистическими показателями разброса результатов (а следовательно, порождаемой им неопределенности) служат дисперсия и стандартное отклонение. Дисперсия рыночной доходности представляет собой ожидаемое отклонение от ожидаемой доходности в квадрате. Это можно выразить иначе:

Дисперсия σ2 = , где ri - фактическая доходность, rср - ожидаемая доходность. Стандартное отклонение равно квадратному корню из дисперсии: стандартное отклонение σ =

Эти показатели и являются естественными измерителями риска. Если бы исход с события был предопределен, стандартное отклонение равнялось бы нулю. Как мы определим позже, дисперсия и стандартное отклонение служат верными критериями риска только при нормальном распределении доходностей. При этом следует иметь ввиду, что только стандартное отклонение имеет размерность исследуемого фактора, дисперсия же, теоретически более адекватно отражает степень разброса значений.

Инвестируя в активы с более высоким риском, инвесторы, как правило, рассчитывают на достижение "более высокой доходности в виде премии за риск (risk premium). Иллюстрацией этой закономерности могут служить данные, приведенные в табл. 1. Таблица содержит статистические оценки в виде выборочного среднего для ожидаемой годовой доходности ,-и в виде выборочного среднеквадратического отклонения для риска , а также соответствующие значения коэффициента вариации для трех видов ценных бумаг фондового рынка США: казначейских векселей (T-bills), долгосрочных корпоративных облигаций (Long Term Corporate Bonds - LTCB's) и обыкновенных акций (Common Stocks - CS's).

Из приведенных данных следует, что большему значению ожидаемой доходности соответствует большее значение риска. Кроме того, анализ значений коэффициента вариации доходности ценных бумаг {Vi} показывает, что с ростом доходности растет и доля риска, приходящаяся на единицу доходности. Существование двух противоположных целей инвестирования позволяет сделать два важных вывода.

1. При осуществлении финансовых инвестиций в условиях неопределенности необходимо учитывать не только ожидаемую доходность, но и риск финансовых активов. При этом притязания инвесторов относительно доходности и риска должны быть сбалансированы.

2. Не следует вкладывать весь капитал в один актив. Действительно, вкладывая весь свой капитал лишь в один актив, инвестор обрекает себя либо на заведомо низкую доходность, либо на заведомо высокий риск. Следствием второго вывода является необходимость распределения (диверсификации) капитала между разными активами[9].

Распределение инвестируемого капитала среди различных ценных бумаг приводит к формированию портфеля ценных бумаг инвестора. За счет использования "эффектов портфеля" инвестор может достичь приемлемых для себя значений ожидаемой доходности и риска вложений. В этом состоит главное преимущество портфельного инвестирования по сравнению с инвестициями в отдельные ценные бумаги.

Выбор портфеля ценных бумаг на основе учета его ожидаемой доходности (mean) и риска (variance) известен как подход "доходность - риск" (mean-variance), который был впервые сформулирован Г. Марковицем. Дальнейшее развитие этот подход получил благодаря ранее упоминавшимся работам Дж. Тобина, У. Шарпа, С. Росса и др.

В рамках данного подхода предполагается, что инвестор стремится максимизировать ожидаемую доходность портфеля при заданном уровне риска либо минимизировать риск при заданном уровне ожидаемой доходности посредством диверсификации вложений. Для иллюстрации проблемы выбора портфеля ценных бумаг с помощью подхода "доходность — риск" удобно использовать кривые безразличия.

Кривые безразличия (indifference curves) - это линии, описывающие различные комбинации значений ожидаемой доходности  и риска  портфелей ценных бумаг, которые являются равноценными в смысле определенных предпочтений инвестора (рис. 2).

Рис. 2. Кривые безразличия инвестора при подходе "доходность — риск"


В рамках подхода "доходность - риск" используются следующие предположения относительно предпочтений инвестора[10]:

1) предположение о "ненасыщаемости" (nonsaturation) инвестора, которое может быть сформулировано следующим образом: при выборе из двух идентичных во всем, кроме ожидаемой доходности, портфелей инвестор отдает предпочтение портфелю с большей ожидаемой доходностью;

2) предположение о том, что инвестор избегает риска (risk aversion), т.е. при выборе из двух идентичных во всем, кроме риска, портфелей он отдает предпочтение портфелю с меньшим риском.

Избегать риска - значит идти на риск только при соответствующей компенсации за риск, т.е. "премии за риск": большему риску должен соответствовать больший доход. Например, инвестор, избегающий риска, не станет участвовать в "честной" азартной игре (fair game) типа подбрасывания монеты, ожидаемый доход от которой равен нулю.

Пусть  - ожидаемая доходность,  — риск портфеля. В силу сделанных предположений относительно предпочтений инвестора в рамках рассматриваемого подхода соответствующие кривые безразличия в системе координат "доходность — риск" должны быть вогнутыми и иметь положительный наклон, как это имеет место на рис. 2.

Кривые безразличия инвестора обладают рядом свойств.

1. Каждая кривая линия описывает множество равноценных портфелей с характеристиками  соответствующими заданному уровню притязаний инвестора, и, следовательно, кривые безразличия одного инвестора не могут пересекаться.

2. Портфели, лежащие выше и левее, являются более привлекательными, чем портфели, располагающиеся ниже и правее. Так, изображенные на рис.2 портфели А и В являются равноценными, портфель С является более привлекательным, чем портфели А я В, а те, в свою очередь, привлекательнее портфеля D.

3. Каждый инвестор имеет бесконечно много кривых безразличия, т.е. ему соответствуют так называемые карты кривых безразличия.

4. Кривые безразличия для инвесторов, избегающих риска в различной степени, т.е. различающихся склонностью к риску, имеют различный угол наклона (рис. 3).

Рассмотрим задачу вычисления характеристик  портфеля ценных бумаг, а также исследуем эффекты портфельного инвестирования.


Рис. 3. Кривые безразличия инвесторов, различающихся склонностью к риску: а - невысокая склонность; b - средняя склонность; с - высокая склонность


Основываясь на вышеизложенном, можно сделать следующие выводы. В настоящее время существует достаточный теоретический аналитический аппарат, основанный на различных математических методах, позволяющих оценивать доходности и риски ценных бумаг.

В рамках рассмотренных классических постановок задач Марковица — Тобина предполагается, что инвесторы формируют оптимальные в смысле подхода "доходность -риск" портфели ценных бумаг сроком на один период владения, исходя из прогнозных значений ожидаемых доходностей и ковариационной матрицы доходностей  на рассматриваемый период инвестирования. Прогнозные значения данных характеристик строятся на основе имеющихся "исторических" значений доходностей активов {} () за предшествующие периоды времени. При этом предполагается, что параметры ,  остаются постоянными в течение всего анализируемого периода.

Государственные облигации используются инвесторами преимущественно для сохранения денежных средств, так как они имеют невысокую доходность, но и риск по ним тоже низок.



3.       Методы управления портфелем долговых ценных бумаг

3.1                                    Сущность портфельного инвестирования


Портфель представляет собой определенный набор из корпоративных акций, облигаций с различной степенью обеспечения и риска, а также бумаг с фиксированным доходом, гарантированным государством, т. е. с минимальным риском потерь по основной сумме и текущим поступлениям[11].

Теоретически портфель может состоять из бумаг одного вида, а также менять свою структуру путем замещения одних бумаг другими. Однако каждая ценная бумага в отдельности не может достигать подобного результата.

Инвестор, работая на рынке ценных бумаг, должен придерживаться принципа диверсификации вкладов: стремиться к разнообразию приобретаемых инвестором финансовых активов. Это необходимо для того, чтобы уменьшить риск потери вкладов. Например, инвестор вложил все свои деньги в акции одной компании. В этом случае он становится полностью зависимым от рыночного колебания курса акций. Если же средства будут вложены в акции нескольких компаний, то доходы инвестора будут зависеть от колебаний некоторого усредненного курса акций компаний, а усредненный курс, как известно, колеблется значительно меньше. Если инвестор придерживается принципа диверсификации, то он обязательно связан с совокупностью принадлежащих ему ценных бумаг различных видов, которая называется инвестиционным (фондовым) портфелем.

Объектами портфельного инвестирования выступают различные ценные бумаги: акции, облигации, производные виды ценных бумаг, часть портфеля может быть представлена в денежном виде. Объемы бумаг в портфеле тоже бывают различными. В зависимости от состава портфеля он может приносить доход или убытки и обладает той или иной степенью риска. Перечень и объемы входящих в портфель ценных бумаг называют структурой портфеля. Последняя представляет собой совокупность характеристик, которыми может управлять инвестор: изменять состав входящих в портфель ценных бумаг и их объемы.

Доходность портфеля и степень риска вложений в него являются целевыми характеристиками портфеля. При портфельном инвестировании инвестор может изменять структуру портфеля, чтобы получить наиболее благоприятные значения целевых характеристик. Таким образом, можно развить представление о фондовом портфеле как совокупности ценных бумаг, собранных инвестором воедино, управляемых как единое целое для достижения определенной цели.

Формируя свой портфель, инвестор должен иметь некоторый механизм отбора для включения в портфель тех или иных видов ценных бумаг, т.е. уметь оценивать их инвестиционные качества посредством методов фундаментального и технического анализа.

Основная задача портфельного инвестирования - улучшить условия инвестирования, придав совокупности ценных бумаг такие инвестиционные характеристики, которые недостижимы с позиции отдельно взятой ценной бумаги, и возможны только при их комбинации.

Только в процессе формирования портфеля достигается новое инвестиционное качество с заданными характеристиками. Таким образом, портфель ценных бумаг является тем инструментом, с помощью которого инвестору обеспечивается требуемая устойчивость дохода при минимальном риске.

Балансовая стоимость характеризует издержки на приобретение данного портфеля и рассчитывается нарастающим итогом путем прибавления к балансовой стоимости имеющегося портфеля основной суммы сделки при покупке ценных бумаг и при продаже путем списания средневзвешенной цены на количество проданных ценных бумаг.

Доходы по портфельным инвестициям представляют собой валовую прибыль по всей совокупности бумаг, включенных в тот или иной портфель с учетом риска. Возникает проблема количественного соответствия между прибылью и риском, которая должна решаться оперативно в целях постоянного совершенствования структуры уже сформированных портфелей и формирования новых в соответствии с пожеланиями инвесторов. Надо сказать, что указанная проблема относится к числу тех, для решения которых достаточно быстро удастся найти общую схему решения, но которые практически не решаются до конца.

Другим преимуществом портфельного инвестирования является возможность выбора портфеля для решения специфических инвестиционных задач.

Для этого используются различные портфели ценных бумаг, в каждом из которых будет собственный баланс между существующим риском, приемлемым для владельца портфеля, и ожидаемой им отдачей (доходом) в определенный период времени. Соотношение этих факторов и позволяет определить тип портфеля ценных бумаг. Тип портфеля - это его инвестиционная характеристика, основанная на соотношении дохода и риска. При этом важным признаком при классификации типа портфеля является то, каким способом и за счет какого источника данный доход получен: за счет роста курсовой стоимости или за счет текущих выплат - дивидендов, процентов.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


© 2010 РЕФЕРАТЫ